

Home Dynamic System Design Reference Documentation
Created for Home Dynamic Home Automation System Prototype, 2017-2018

Introduction to Home Dynamic System
Home Dynamic is a Raspberry Pi Zero W based low cost and easy to setup Home
Automation System (or IoT System) design for compact space operation like Hong Kong or
other high density cities like London, Tokyo etc.

System Features
Home Dynamic System features three Module Programming Interface (MPI), compensating
the lack of programming interface for current Home Automation System like the OpenHAB
and Home Assistant. Home Dynamic will use the IF-THEN-ELSE-NEXT (IFTEN), Dynamic
Blueprint™ and standard JavaScript Programming Interface for beginners, advanced
users and expert. The code generated by the 3 different systems can be converted to
different editing mode and exchange between different users.

Another feature for Home Dynamic System will be its low cost and easy to set up modules.
For each IoT module, we are expecting to sell at $10USD per unit. For example, if the user
request for a IoT controlled Air Conditioner, assume the user already have his Home
Dynamic system hosted and running, the user will need to purchase a Main Power Control
Block (For on/off, NodeMCU inclusive) , IR Transceiver (For temperature control, Tinduino
inclusive). In total $20USD. The modules can be linked in series, as well as power supply
system and access port. The detail will be mentioned in the hardware specification section.

Main Control Interface Structure
The main interface reference the OpenHAB’s interface design, but with much more easy to
control and similar interface and reduced the number of information displayed on the
interface. Material designs are used to design the interface of the Home Dynamic main user
interface and the interface can be easily updated using build in functions.
The Home Dynamic Main Control Interface can be opened with browser on all kind of
devices support ES6 JavaScript. Including Chrome, Firefox and Edge.

Multi-user control are performed using Client-To-Module linkage instead of central server
operation like the other open source Home Automation System did. The structure of control
system via interface is represented in the graph below.

With this design, even if the server’s processing power is low, it can still support a number of
users from LAN connection as the more client is connected to the system, there are more
devices to share the processing load in controlling all devices.

Standard Hardware Specification
The standard module of Home Dynamic will be made up with the following type of devices or
repeater.

1. Basic Relay Module
2. Basic IR Module
3. Remote GPIO Module
4. Signal Repeater (Standard Wifi Repeater)

The structure of Standard Hardware Modules are illustrated in the following diagram.

Master - Assistant Microprocessor Architecture
The hardware specification of the ESP8266 and Tinduino are as following.

NodeMCU v1.0+ / ESP8266
Manufacturer Espressif Systems
Type Microcontroller
CPU @ 80 MHz (default) or 160 MHz Memory
64 KiB instruction, 96 KiB data
Input 16 GPIO pins
Power 5VDC / 3.3 VDC

Tinduino v3.5+
Manufacturer IMUS Laboratory
Type Microcontroller
CPU AVR ATtiny44A @ 8Mhz (MIPS)
Memory 4KiB instruction, 256 Byte EEPROM
Input 11 GPIO pins
Power 5 VDC

The ESP8266 in this system is used to provide HTML interface via HTTP. The command will
be sent to Tinduino for further processing. This is designed to be freeze proof and in case
the system has no responses, the NodeMCU / ESP8266 can receive command from Home
Dynamic Host to terminate any program running on Tinduino. Tinduino can also be an
additional processing core for NodeMCU / ESP8266 while computing complicated algorithm
or data phrasing. Another benefit for using dual microprocessor will be performing activating
mechanism for NodeMCU / ESP Wifi services while Wifi services are in sleep mode under
battery mode. This structure is similar to Qualcomm “Big-little technology”.

https://en.wikipedia.org/wiki/Central_processing_unit

IF-Then-Else-Next Programming Interface (IFTEN)
The IFTEN interface are designed to be used by non professional users. This programming
interface provide drag-drop menu and simple to use selection choices for users to choose
from and control their IoT devices connected to the Host. IFTEN language can be later
translated into Dynamic Blueprint Programming System or pure JavaScript and open in the
system build in JavaScript Editor.

An IFTEN Statement example as follow.

An IFTEN Statement can be extend. However, one If-Then-Else Statement cannot contain
another If-Then-Else Statement. This is for the ease of programming for beginners and the
system should not be as complicated as real programming languages.
The available command are grabbed from the system host. And the system host will grab
the necessary functions from the IoT Module (i.e. NodeMCU) and return all the possible
command usable. It is basically a list of usable GPIO and Control Mode for standard
modules and custom mode for non-standard modules.

Here are some examples for IFTEN Statements, Next/Jump Instructions and System
Services Instructions.

IFTEN Statements Next / Jump System Service

IF
THEN
ELSE
AND
OR
NOT

NEXT
LABEL(id)
JUMP(Label, Dropdown
Menu for selection)
END

ONLINE(Module uuid)
OFFLINE(Module uuid)
KILL(Module uuid)
RUNNING(Module uuid)
WAIT_FINISH(Module uuid)
TIME_OUT(Module uuid,
time in ms)
NOTIFY(Text)

Dynamic Blueprint System (Blueprint)
Dynamic Blueprint System is a programming interface for Home Dynamic Project. The
Dynamic Blueprint is for advance system users in which they have the basic logic in
controlling numbers of IoT devices and control what they need to be automated. Compare to
IFTEN, Blueprint gives much more flexibility in creating complicated home management
scripts. The script can be easily changed by drag drop and line drawing. One basic
statement of the Blueprint system is as follow.

The above statement is equivalent to an IFTEN statement of:

IF Light_Sensor_A(value) > 40% THEN Room_Light_A(mode) ON ELSE
Room_Light_A(mode) OFF NEXT

However, as IFTEN do not support comparative statements, this cannot be replicated in
IFTEN system. Instead, this will become a less sensitive statement as follow:

IF Light_Sensor_A=true THEN Room_Light_A ON ELSE Room_Light_A OFF NEXT
(p.s. Default true implies the sensor value is greater than the default value plus offsets. It was set by the hardware
manufacturer.)

The color code for different function blocks are illustrated in the diagram below.

Home Dynamic Transfer Protocol
The Home Dynamic Transfer Protocol (HDTP) is the main data pathway within the Home
Dynamic System. The datapath mainly consists of two parts.

1. Home Dynamic Host ⇋ Client User Interface (HC Pathway)
2. Home Dynamic Host ⇋ IoT Modules (HI Pathway)

The specification of HC Pathway is json based and HI Pathway are plain text over HTTP.
The detail of the protocol is specified as follow.

HI Pathway
The HI Pathway divided into two parts. The IoT Module and the Host Caching System. Here
is a simple demonstration on the module creating Module Functions Cache in the Host
Caching System and rename the module to a new name.
 IoT→Host are in blue and Host→IoT is in red, requests are in green.

<Module setup finished, first connection to Host>
GET: Module_setup.php (module uuid, module ip, module port, module name)
Request: module_ip:port/info
Plain Text:
<Module-Name>_<Module-uuid>_funct:<funct_Path>_<item>:<values>_<item>:<values>
Request: module_ip:port/<funct_path>
Plain Text: <Module-uuid>_<JavaScript Functions Code>
Request: module_ip:port/rename
GET: <Module-uuid>_<new-name>
Plain Text: <Module-uuid>_DONE
<Repeat Request of /info to get the new devices name and update Host Function Cache>

The HI Pathway should support the following standard commands and have followed the
following protocol definitions.

Standard Request Path Supported Response Type

/info
/funct/ <function name to call>
/uuid
/kill
/running

State:<key1>,<value1>;<key2>,<value2>
Mode:<path>_Option:<option1>,<option2>
Variables:<path>_Keywords:<keyword1>,<
keyword2>*

*Return in GET variables. E.g. /path/keyword1=text1&keyword2=text2

Module uuid and ip address will be passed to the Home Dynamic Host while initiate or by
pressing the reconnect button on the module. The module will make a request for IP update.

http://home_dynamic:port/subpath/setIP.php?uuid=<module_uuid>&ip=<module_ipv4>
>DONE

HC Pathway
The HC Pathway consists of two main sub-system. Including the general json format for
programming interfaces IFTEN and Dynamic Blueprint System, and User Interface Update
Protocol.

Home Dynamic Server → Client Programming Interface
The Server to Client Programming Interface relies on the module uuid and gtid. UUID is an
unique id for each IoT Modules under the Home Dynamic system and the GTID is the
general type id for a group of specified Home Automation Module that use the same
firmware and communication methods. Here is an example for the Standard Relay Module
information supplied with the uuid page.

UUID=ce987b33-3584-4add-80f2-670441822200
GTID=com.imuslab.home_dynamic.standard.relay

Extra information can be given in the uuid page including manufacturing date, batch number
and simple description on module operation method and contact info etc. A full uuid page
example is as follow.

UUID=ce987b33-3584-4add-80f2-670441822200
GTID=com.imuslab.home_dynamic.standard.relay
MANUFACTURE_DATE=23/11/2017
DESCRIPTION=The IMUS Standard Relay Module for automated switches!
CONTACT=contact.imuslab.com

Blue items are necessary. Purple items are optional information.

And the above information will be used to download an additional javascript library
containing all the required functions and protocol for activating the module. Or the user can
choose to upload from their file system. The json phrased as follow.

{
 "name": "Standard Relay Module",
 "manufacturer": "IMUS Laboratory",
 "uuid": "ce987b33-3584-4add-80f2-670441822200",
 "gtid": "com.imuslab.home_dynamic.standard.relay",
 "IOs": [

[
 "Toggle",
 "This function is set the mode of the Relay Module, input \"ON\" to turn on and
\"OFF\" to turn off.",
 "select",
 "string"

],
[

 "CheckOnline",
 "This function is to check if the Relay Online",

 "return",
 "boolean"

],
[

 "GetMode",
 "return",
 "boolean"

]
],
 "functions": [

"function Toggle(status){\nif (hd.module.connected(uuid)==true){\n//This module is
connected\nswitch(status){\ncase \"ON\": hd.send(uuid,true);break;\ncase \"OFF\":
hd.send(uuid,false);break;\nreturn true;\n}\n",

"function CheckOnline(){\nif (hd.module.connected(this.uuid) == true){\n//The
module is currently online\nreturn true;\n}else{\nreturn false;\n}",

"function GetMode(){\nif (hd.module.connected(this.uuid) == true){\n//The module
is currently online\nif (hd.get(uuid,\"/mode\").includes(\"ON\")){\nreturn
\"ON\";\n}else{\nreturn \"OFF\";\n}\n}"
]
}

**The color code above illustrate how the three function was created and acknowledge the programming interface on how to
use the functions.

Then after the programming interface, a json file will be composed and generated. The json
file then will get feed into a compiler and the javascript will be stored as a script file on server
side. The storage position is depend on the starting block (ON, AT, or START).

Starting Block Specification
The starting block will define how the program run. There are three type of START event in
the Home Dynamic System.

ON events ON an sensor / detector get triggered. Passive script starting mode.

AT events AT get trigger at a specific period of time. Active script starting mode.

START events START get triggered when user press a button. Passive script starting
mode.

Home Dynamic Server → User Interface / Interface Update Protocol
The User Interface Update Protocol specify the command needed to update a certain
module on the control interface. For example, the switch of an IoT device should goes green
after switching on and red after switching off. The status is being stored in server side as a
config file and communication are done using http request. Alternatively, the active response
system can be done using websocketd and php script on the server side.
(Please refer websocketd on http://websocketd.com/)

Additional plugins can be installed to use Node.js with Websocket for update functions. This
will be done after the main system finished and made as an external plugin for alternative
experimental projects that is designed for the Home Dynamic System.

The json format grabbed by the client is a custom formatted json file with the following
format.

{
 "uuid": [
 "Module Name",
 [
 "Property Name",
 "Type",
 "Data"
]
],
 "6549eb01-8c88-41d0-b3b0-0c942054afe0": [
 "Demo Room Desk Lamp",
 [
 "Status",
 "boolean",
 "true"
],
 [
 "Brightness",
 "float",
 "0.5"

http://websocketd.com/

]
]
}

The information is then phrased to an interface and show all the status information of the
system. The modules can be grouped on the web interface. While requesting for the status,
the group name can be passed as a variable and the required module information will be
packed into a json file for client processing. The following are the examples for group sorting
in json phrasing.

getStatus.php?group=my%20room
getStatus.php?uuid=6549eb01-8c88-41d0-b3b0-0c942054afe0
getStatus.php?uuid=6549eb01-8c88-41d0-b3b0-0c942054afe0,ce50caee-44ea-4cf8-9a87
-2aed6c5f06b8,a19bc874-b743-4fa7-b13b-d81b262d9e4a
getStatus.php?search=Lamp

If the user want to activate an appliances, or module, given the uuid, the client will send an
AJAX request to the Home Dynamic Host for advance information on a uuid.

getDetail.php?uuid=6549eb01-8c88-41d0-b3b0-0c942054afe0

Then the php will return the module’s detail in json format, specifying all the command that is
usable on this IoT module. For example, the Desk Lamp will turn on when request
192.168.0.123/ON and turn off when request 192.168.0.123/OFF with basic auth of
“username” and “password”, then the json passed from the PHP script to client interface will
be as follow.

{
 "6549eb01-8c88-41d0-b3b0-0c942054afe0": [
 "Demo Room Desk Lamp",
 "192.168.0.123",
 "username",
 "password",
 [
 "ON",
 "This command turn on the Desk Lamp",
 "/ON"
],
 [
 "OFF",
 "This command turn off the Desk Lamp",
 "/OFF"
]
]
}

Home Dynamic Host Specification
The Home Dynamic Host System is a server that provide centralized processing of all the
modules. The stability of the server (host) is extremely important. Hence, it will be suggested
that the server be setted up as follow.

Home Dynamic System can work with ArOZ Online BETA to provide a fully personal cloud
experience for the user providing with Video Streaming, Music Streaming, Photo Station,
Memo, Notification, Manga Reading and many alternative functions. In the case of the user
want to install Home Dynamic System with ArOZ Online BETA, there are two choices
regarding the installation method.

1. Home Dynamic System installs on a separate server with the ArOZ Online BETA. For
example, HDS is installed on 192.168.0.2 and AOB is installed at 192.168.0.3

2. Home Dynamic System is installed as a module of ArOZ Online BETA system. (This
installation method might cause some unexpected error or function lossing)

