darknet53.cfg 5.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566
  1. [net]
  2. # Training
  3. # batch=128
  4. # subdivisions=4
  5. # Testing
  6. batch=1
  7. subdivisions=1
  8. height=256
  9. width=256
  10. channels=3
  11. min_crop=128
  12. max_crop=448
  13. burn_in=1000
  14. learning_rate=0.1
  15. policy=poly
  16. power=4
  17. max_batches=800000
  18. momentum=0.9
  19. decay=0.0005
  20. angle=7
  21. hue=.1
  22. saturation=.75
  23. exposure=.75
  24. aspect=.75
  25. [convolutional]
  26. batch_normalize=1
  27. filters=32
  28. size=3
  29. stride=1
  30. pad=1
  31. activation=leaky
  32. # Downsample
  33. [convolutional]
  34. batch_normalize=1
  35. filters=64
  36. size=3
  37. stride=2
  38. pad=1
  39. activation=leaky
  40. [convolutional]
  41. batch_normalize=1
  42. filters=32
  43. size=1
  44. stride=1
  45. pad=1
  46. activation=leaky
  47. [convolutional]
  48. batch_normalize=1
  49. filters=64
  50. size=3
  51. stride=1
  52. pad=1
  53. activation=leaky
  54. [shortcut]
  55. from=-3
  56. activation=linear
  57. # Downsample
  58. [convolutional]
  59. batch_normalize=1
  60. filters=128
  61. size=3
  62. stride=2
  63. pad=1
  64. activation=leaky
  65. [convolutional]
  66. batch_normalize=1
  67. filters=64
  68. size=1
  69. stride=1
  70. pad=1
  71. activation=leaky
  72. [convolutional]
  73. batch_normalize=1
  74. filters=128
  75. size=3
  76. stride=1
  77. pad=1
  78. activation=leaky
  79. [shortcut]
  80. from=-3
  81. activation=linear
  82. [convolutional]
  83. batch_normalize=1
  84. filters=64
  85. size=1
  86. stride=1
  87. pad=1
  88. activation=leaky
  89. [convolutional]
  90. batch_normalize=1
  91. filters=128
  92. size=3
  93. stride=1
  94. pad=1
  95. activation=leaky
  96. [shortcut]
  97. from=-3
  98. activation=linear
  99. # Downsample
  100. [convolutional]
  101. batch_normalize=1
  102. filters=256
  103. size=3
  104. stride=2
  105. pad=1
  106. activation=leaky
  107. [convolutional]
  108. batch_normalize=1
  109. filters=128
  110. size=1
  111. stride=1
  112. pad=1
  113. activation=leaky
  114. [convolutional]
  115. batch_normalize=1
  116. filters=256
  117. size=3
  118. stride=1
  119. pad=1
  120. activation=leaky
  121. [shortcut]
  122. from=-3
  123. activation=linear
  124. [convolutional]
  125. batch_normalize=1
  126. filters=128
  127. size=1
  128. stride=1
  129. pad=1
  130. activation=leaky
  131. [convolutional]
  132. batch_normalize=1
  133. filters=256
  134. size=3
  135. stride=1
  136. pad=1
  137. activation=leaky
  138. [shortcut]
  139. from=-3
  140. activation=linear
  141. [convolutional]
  142. batch_normalize=1
  143. filters=128
  144. size=1
  145. stride=1
  146. pad=1
  147. activation=leaky
  148. [convolutional]
  149. batch_normalize=1
  150. filters=256
  151. size=3
  152. stride=1
  153. pad=1
  154. activation=leaky
  155. [shortcut]
  156. from=-3
  157. activation=linear
  158. [convolutional]
  159. batch_normalize=1
  160. filters=128
  161. size=1
  162. stride=1
  163. pad=1
  164. activation=leaky
  165. [convolutional]
  166. batch_normalize=1
  167. filters=256
  168. size=3
  169. stride=1
  170. pad=1
  171. activation=leaky
  172. [shortcut]
  173. from=-3
  174. activation=linear
  175. [convolutional]
  176. batch_normalize=1
  177. filters=128
  178. size=1
  179. stride=1
  180. pad=1
  181. activation=leaky
  182. [convolutional]
  183. batch_normalize=1
  184. filters=256
  185. size=3
  186. stride=1
  187. pad=1
  188. activation=leaky
  189. [shortcut]
  190. from=-3
  191. activation=linear
  192. [convolutional]
  193. batch_normalize=1
  194. filters=128
  195. size=1
  196. stride=1
  197. pad=1
  198. activation=leaky
  199. [convolutional]
  200. batch_normalize=1
  201. filters=256
  202. size=3
  203. stride=1
  204. pad=1
  205. activation=leaky
  206. [shortcut]
  207. from=-3
  208. activation=linear
  209. [convolutional]
  210. batch_normalize=1
  211. filters=128
  212. size=1
  213. stride=1
  214. pad=1
  215. activation=leaky
  216. [convolutional]
  217. batch_normalize=1
  218. filters=256
  219. size=3
  220. stride=1
  221. pad=1
  222. activation=leaky
  223. [shortcut]
  224. from=-3
  225. activation=linear
  226. [convolutional]
  227. batch_normalize=1
  228. filters=128
  229. size=1
  230. stride=1
  231. pad=1
  232. activation=leaky
  233. [convolutional]
  234. batch_normalize=1
  235. filters=256
  236. size=3
  237. stride=1
  238. pad=1
  239. activation=leaky
  240. [shortcut]
  241. from=-3
  242. activation=linear
  243. # Downsample
  244. [convolutional]
  245. batch_normalize=1
  246. filters=512
  247. size=3
  248. stride=2
  249. pad=1
  250. activation=leaky
  251. [convolutional]
  252. batch_normalize=1
  253. filters=256
  254. size=1
  255. stride=1
  256. pad=1
  257. activation=leaky
  258. [convolutional]
  259. batch_normalize=1
  260. filters=512
  261. size=3
  262. stride=1
  263. pad=1
  264. activation=leaky
  265. [shortcut]
  266. from=-3
  267. activation=linear
  268. [convolutional]
  269. batch_normalize=1
  270. filters=256
  271. size=1
  272. stride=1
  273. pad=1
  274. activation=leaky
  275. [convolutional]
  276. batch_normalize=1
  277. filters=512
  278. size=3
  279. stride=1
  280. pad=1
  281. activation=leaky
  282. [shortcut]
  283. from=-3
  284. activation=linear
  285. [convolutional]
  286. batch_normalize=1
  287. filters=256
  288. size=1
  289. stride=1
  290. pad=1
  291. activation=leaky
  292. [convolutional]
  293. batch_normalize=1
  294. filters=512
  295. size=3
  296. stride=1
  297. pad=1
  298. activation=leaky
  299. [shortcut]
  300. from=-3
  301. activation=linear
  302. [convolutional]
  303. batch_normalize=1
  304. filters=256
  305. size=1
  306. stride=1
  307. pad=1
  308. activation=leaky
  309. [convolutional]
  310. batch_normalize=1
  311. filters=512
  312. size=3
  313. stride=1
  314. pad=1
  315. activation=leaky
  316. [shortcut]
  317. from=-3
  318. activation=linear
  319. [convolutional]
  320. batch_normalize=1
  321. filters=256
  322. size=1
  323. stride=1
  324. pad=1
  325. activation=leaky
  326. [convolutional]
  327. batch_normalize=1
  328. filters=512
  329. size=3
  330. stride=1
  331. pad=1
  332. activation=leaky
  333. [shortcut]
  334. from=-3
  335. activation=linear
  336. [convolutional]
  337. batch_normalize=1
  338. filters=256
  339. size=1
  340. stride=1
  341. pad=1
  342. activation=leaky
  343. [convolutional]
  344. batch_normalize=1
  345. filters=512
  346. size=3
  347. stride=1
  348. pad=1
  349. activation=leaky
  350. [shortcut]
  351. from=-3
  352. activation=linear
  353. [convolutional]
  354. batch_normalize=1
  355. filters=256
  356. size=1
  357. stride=1
  358. pad=1
  359. activation=leaky
  360. [convolutional]
  361. batch_normalize=1
  362. filters=512
  363. size=3
  364. stride=1
  365. pad=1
  366. activation=leaky
  367. [shortcut]
  368. from=-3
  369. activation=linear
  370. [convolutional]
  371. batch_normalize=1
  372. filters=256
  373. size=1
  374. stride=1
  375. pad=1
  376. activation=leaky
  377. [convolutional]
  378. batch_normalize=1
  379. filters=512
  380. size=3
  381. stride=1
  382. pad=1
  383. activation=leaky
  384. [shortcut]
  385. from=-3
  386. activation=linear
  387. # Downsample
  388. [convolutional]
  389. batch_normalize=1
  390. filters=1024
  391. size=3
  392. stride=2
  393. pad=1
  394. activation=leaky
  395. [convolutional]
  396. batch_normalize=1
  397. filters=512
  398. size=1
  399. stride=1
  400. pad=1
  401. activation=leaky
  402. [convolutional]
  403. batch_normalize=1
  404. filters=1024
  405. size=3
  406. stride=1
  407. pad=1
  408. activation=leaky
  409. [shortcut]
  410. from=-3
  411. activation=linear
  412. [convolutional]
  413. batch_normalize=1
  414. filters=512
  415. size=1
  416. stride=1
  417. pad=1
  418. activation=leaky
  419. [convolutional]
  420. batch_normalize=1
  421. filters=1024
  422. size=3
  423. stride=1
  424. pad=1
  425. activation=leaky
  426. [shortcut]
  427. from=-3
  428. activation=linear
  429. [convolutional]
  430. batch_normalize=1
  431. filters=512
  432. size=1
  433. stride=1
  434. pad=1
  435. activation=leaky
  436. [convolutional]
  437. batch_normalize=1
  438. filters=1024
  439. size=3
  440. stride=1
  441. pad=1
  442. activation=leaky
  443. [shortcut]
  444. from=-3
  445. activation=linear
  446. [convolutional]
  447. batch_normalize=1
  448. filters=512
  449. size=1
  450. stride=1
  451. pad=1
  452. activation=leaky
  453. [convolutional]
  454. batch_normalize=1
  455. filters=1024
  456. size=3
  457. stride=1
  458. pad=1
  459. activation=leaky
  460. [shortcut]
  461. from=-3
  462. activation=linear
  463. [avgpool]
  464. [convolutional]
  465. filters=1000
  466. size=1
  467. stride=1
  468. pad=1
  469. activation=linear
  470. [softmax]
  471. groups=1