darknet9000.cfg 2.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. [net]
  2. # Training
  3. # batch=128
  4. # subdivisions=4
  5. # Testing
  6. batch = 1
  7. subdivisions = 1
  8. height=448
  9. width=448
  10. max_crop=512
  11. channels=3
  12. momentum=0.9
  13. decay=0.0005
  14. learning_rate=0.001
  15. policy=poly
  16. power=4
  17. max_batches=100000
  18. angle=7
  19. hue=.1
  20. saturation=.75
  21. exposure=.75
  22. aspect=.75
  23. [convolutional]
  24. batch_normalize=1
  25. filters=32
  26. size=3
  27. stride=1
  28. pad=1
  29. activation=leaky
  30. [maxpool]
  31. size=2
  32. stride=2
  33. [convolutional]
  34. batch_normalize=1
  35. filters=64
  36. size=3
  37. stride=1
  38. pad=1
  39. activation=leaky
  40. [maxpool]
  41. size=2
  42. stride=2
  43. [convolutional]
  44. batch_normalize=1
  45. filters=128
  46. size=3
  47. stride=1
  48. pad=1
  49. activation=leaky
  50. [convolutional]
  51. batch_normalize=1
  52. filters=64
  53. size=1
  54. stride=1
  55. pad=1
  56. activation=leaky
  57. [convolutional]
  58. batch_normalize=1
  59. filters=128
  60. size=3
  61. stride=1
  62. pad=1
  63. activation=leaky
  64. [maxpool]
  65. size=2
  66. stride=2
  67. [convolutional]
  68. batch_normalize=1
  69. filters=256
  70. size=3
  71. stride=1
  72. pad=1
  73. activation=leaky
  74. [convolutional]
  75. batch_normalize=1
  76. filters=128
  77. size=1
  78. stride=1
  79. pad=1
  80. activation=leaky
  81. [convolutional]
  82. batch_normalize=1
  83. filters=256
  84. size=3
  85. stride=1
  86. pad=1
  87. activation=leaky
  88. [maxpool]
  89. size=2
  90. stride=2
  91. [convolutional]
  92. batch_normalize=1
  93. filters=512
  94. size=3
  95. stride=1
  96. pad=1
  97. activation=leaky
  98. [convolutional]
  99. batch_normalize=1
  100. filters=256
  101. size=1
  102. stride=1
  103. pad=1
  104. activation=leaky
  105. [convolutional]
  106. batch_normalize=1
  107. filters=512
  108. size=3
  109. stride=1
  110. pad=1
  111. activation=leaky
  112. [convolutional]
  113. batch_normalize=1
  114. filters=256
  115. size=1
  116. stride=1
  117. pad=1
  118. activation=leaky
  119. [convolutional]
  120. batch_normalize=1
  121. filters=512
  122. size=3
  123. stride=1
  124. pad=1
  125. activation=leaky
  126. [maxpool]
  127. size=2
  128. stride=2
  129. [convolutional]
  130. batch_normalize=1
  131. filters=1024
  132. size=3
  133. stride=1
  134. pad=1
  135. activation=leaky
  136. [convolutional]
  137. batch_normalize=1
  138. filters=512
  139. size=1
  140. stride=1
  141. pad=1
  142. activation=leaky
  143. [convolutional]
  144. batch_normalize=1
  145. filters=1024
  146. size=3
  147. stride=1
  148. pad=1
  149. activation=leaky
  150. [convolutional]
  151. batch_normalize=1
  152. filters=512
  153. size=1
  154. stride=1
  155. pad=1
  156. activation=leaky
  157. [convolutional]
  158. batch_normalize=1
  159. filters=1024
  160. size=3
  161. stride=1
  162. pad=1
  163. activation=leaky
  164. [convolutional]
  165. filters=9418
  166. size=1
  167. stride=1
  168. pad=1
  169. activation=linear
  170. [avgpool]
  171. [softmax]
  172. groups=1
  173. tree=data/9k.tree
  174. [cost]
  175. type=masked