resnext50.cfg 5.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523
  1. [net]
  2. # Training
  3. # batch=128
  4. # subdivisions=4
  5. # Testing
  6. batch=1
  7. subdivisions=1
  8. height=256
  9. width=256
  10. channels=3
  11. min_crop=128
  12. max_crop=448
  13. burn_in=1000
  14. learning_rate=0.1
  15. policy=poly
  16. power=4
  17. max_batches=800000
  18. momentum=0.9
  19. decay=0.0005
  20. angle=7
  21. hue=.1
  22. saturation=.75
  23. exposure=.75
  24. aspect=.75
  25. [convolutional]
  26. batch_normalize=1
  27. filters=64
  28. size=7
  29. stride=2
  30. pad=1
  31. activation=leaky
  32. [maxpool]
  33. size=2
  34. stride=2
  35. [convolutional]
  36. batch_normalize=1
  37. filters=128
  38. size=1
  39. stride=1
  40. pad=1
  41. activation=leaky
  42. [convolutional]
  43. batch_normalize=1
  44. filters=128
  45. size=3
  46. groups=32
  47. stride=1
  48. pad=1
  49. activation=leaky
  50. [convolutional]
  51. batch_normalize=1
  52. filters=256
  53. size=1
  54. stride=1
  55. pad=1
  56. activation=linear
  57. [shortcut]
  58. from=-4
  59. activation=leaky
  60. [convolutional]
  61. batch_normalize=1
  62. filters=128
  63. size=1
  64. stride=1
  65. pad=1
  66. activation=leaky
  67. [convolutional]
  68. batch_normalize=1
  69. filters=128
  70. size=3
  71. groups=32
  72. stride=1
  73. pad=1
  74. activation=leaky
  75. [convolutional]
  76. batch_normalize=1
  77. filters=256
  78. size=1
  79. stride=1
  80. pad=1
  81. activation=linear
  82. [shortcut]
  83. from=-4
  84. activation=leaky
  85. [convolutional]
  86. batch_normalize=1
  87. filters=128
  88. size=1
  89. stride=1
  90. pad=1
  91. activation=leaky
  92. [convolutional]
  93. batch_normalize=1
  94. filters=128
  95. size=3
  96. groups=32
  97. stride=1
  98. pad=1
  99. activation=leaky
  100. [convolutional]
  101. batch_normalize=1
  102. filters=256
  103. size=1
  104. stride=1
  105. pad=1
  106. activation=linear
  107. [shortcut]
  108. from=-4
  109. activation=leaky
  110. [convolutional]
  111. batch_normalize=1
  112. filters=256
  113. size=1
  114. stride=1
  115. pad=1
  116. activation=leaky
  117. [convolutional]
  118. batch_normalize=1
  119. filters=256
  120. size=3
  121. groups=32
  122. stride=2
  123. pad=1
  124. activation=leaky
  125. [convolutional]
  126. batch_normalize=1
  127. filters=512
  128. size=1
  129. stride=1
  130. pad=1
  131. activation=linear
  132. [shortcut]
  133. from=-4
  134. activation=leaky
  135. [convolutional]
  136. batch_normalize=1
  137. filters=256
  138. size=1
  139. stride=1
  140. pad=1
  141. activation=leaky
  142. [convolutional]
  143. batch_normalize=1
  144. filters=256
  145. size=3
  146. groups=32
  147. stride=1
  148. pad=1
  149. activation=leaky
  150. [convolutional]
  151. batch_normalize=1
  152. filters=512
  153. size=1
  154. stride=1
  155. pad=1
  156. activation=linear
  157. [shortcut]
  158. from=-4
  159. activation=leaky
  160. [convolutional]
  161. batch_normalize=1
  162. filters=256
  163. size=1
  164. stride=1
  165. pad=1
  166. activation=leaky
  167. [convolutional]
  168. batch_normalize=1
  169. filters=256
  170. size=3
  171. groups=32
  172. stride=1
  173. pad=1
  174. activation=leaky
  175. [convolutional]
  176. batch_normalize=1
  177. filters=512
  178. size=1
  179. stride=1
  180. pad=1
  181. activation=linear
  182. [shortcut]
  183. from=-4
  184. activation=leaky
  185. [convolutional]
  186. batch_normalize=1
  187. filters=256
  188. size=1
  189. stride=1
  190. pad=1
  191. activation=leaky
  192. [convolutional]
  193. batch_normalize=1
  194. filters=256
  195. size=3
  196. groups=32
  197. stride=1
  198. pad=1
  199. activation=leaky
  200. [convolutional]
  201. batch_normalize=1
  202. filters=512
  203. size=1
  204. stride=1
  205. pad=1
  206. activation=linear
  207. [shortcut]
  208. from=-4
  209. activation=leaky
  210. # Conv 4
  211. [convolutional]
  212. batch_normalize=1
  213. filters=512
  214. size=1
  215. stride=1
  216. pad=1
  217. activation=leaky
  218. [convolutional]
  219. batch_normalize=1
  220. filters=512
  221. size=3
  222. groups=32
  223. stride=2
  224. pad=1
  225. activation=leaky
  226. [convolutional]
  227. batch_normalize=1
  228. filters=1024
  229. size=1
  230. stride=1
  231. pad=1
  232. activation=linear
  233. [shortcut]
  234. from=-4
  235. activation=leaky
  236. [convolutional]
  237. batch_normalize=1
  238. filters=512
  239. size=1
  240. stride=1
  241. pad=1
  242. activation=leaky
  243. [convolutional]
  244. batch_normalize=1
  245. filters=512
  246. size=3
  247. groups=32
  248. stride=1
  249. pad=1
  250. activation=leaky
  251. [convolutional]
  252. batch_normalize=1
  253. filters=1024
  254. size=1
  255. stride=1
  256. pad=1
  257. activation=linear
  258. [shortcut]
  259. from=-4
  260. activation=leaky
  261. [convolutional]
  262. batch_normalize=1
  263. filters=512
  264. size=1
  265. stride=1
  266. pad=1
  267. activation=leaky
  268. [convolutional]
  269. batch_normalize=1
  270. filters=512
  271. size=3
  272. groups=32
  273. stride=1
  274. pad=1
  275. activation=leaky
  276. [convolutional]
  277. batch_normalize=1
  278. filters=1024
  279. size=1
  280. stride=1
  281. pad=1
  282. activation=linear
  283. [shortcut]
  284. from=-4
  285. activation=leaky
  286. [convolutional]
  287. batch_normalize=1
  288. filters=512
  289. size=1
  290. stride=1
  291. pad=1
  292. activation=leaky
  293. [convolutional]
  294. batch_normalize=1
  295. filters=512
  296. size=3
  297. groups=32
  298. stride=1
  299. pad=1
  300. activation=leaky
  301. [convolutional]
  302. batch_normalize=1
  303. filters=1024
  304. size=1
  305. stride=1
  306. pad=1
  307. activation=linear
  308. [shortcut]
  309. from=-4
  310. activation=leaky
  311. [convolutional]
  312. batch_normalize=1
  313. filters=512
  314. size=1
  315. stride=1
  316. pad=1
  317. activation=leaky
  318. [convolutional]
  319. batch_normalize=1
  320. filters=512
  321. size=3
  322. groups=32
  323. stride=1
  324. pad=1
  325. activation=leaky
  326. [convolutional]
  327. batch_normalize=1
  328. filters=1024
  329. size=1
  330. stride=1
  331. pad=1
  332. activation=linear
  333. [shortcut]
  334. from=-4
  335. activation=leaky
  336. [convolutional]
  337. batch_normalize=1
  338. filters=512
  339. size=1
  340. stride=1
  341. pad=1
  342. activation=leaky
  343. [convolutional]
  344. batch_normalize=1
  345. filters=512
  346. size=3
  347. groups=32
  348. stride=1
  349. pad=1
  350. activation=leaky
  351. [convolutional]
  352. batch_normalize=1
  353. filters=1024
  354. size=1
  355. stride=1
  356. pad=1
  357. activation=linear
  358. [shortcut]
  359. from=-4
  360. activation=leaky
  361. #Conv 5
  362. [convolutional]
  363. batch_normalize=1
  364. filters=1024
  365. size=1
  366. stride=1
  367. pad=1
  368. activation=leaky
  369. [convolutional]
  370. batch_normalize=1
  371. filters=1024
  372. size=3
  373. groups=32
  374. stride=2
  375. pad=1
  376. activation=leaky
  377. [convolutional]
  378. batch_normalize=1
  379. filters=2048
  380. size=1
  381. stride=1
  382. pad=1
  383. activation=linear
  384. [shortcut]
  385. from=-4
  386. activation=leaky
  387. [convolutional]
  388. batch_normalize=1
  389. filters=1024
  390. size=1
  391. stride=1
  392. pad=1
  393. activation=leaky
  394. [convolutional]
  395. batch_normalize=1
  396. filters=1024
  397. size=3
  398. groups=32
  399. stride=1
  400. pad=1
  401. activation=leaky
  402. [convolutional]
  403. batch_normalize=1
  404. filters=2048
  405. size=1
  406. stride=1
  407. pad=1
  408. activation=linear
  409. [shortcut]
  410. from=-4
  411. activation=leaky
  412. [convolutional]
  413. batch_normalize=1
  414. filters=1024
  415. size=1
  416. stride=1
  417. pad=1
  418. activation=leaky
  419. [convolutional]
  420. batch_normalize=1
  421. filters=1024
  422. size=3
  423. groups=32
  424. stride=1
  425. pad=1
  426. activation=leaky
  427. [convolutional]
  428. batch_normalize=1
  429. filters=2048
  430. size=1
  431. stride=1
  432. pad=1
  433. activation=linear
  434. [shortcut]
  435. from=-4
  436. activation=leaky
  437. [avgpool]
  438. [convolutional]
  439. filters=1000
  440. size=1
  441. stride=1
  442. pad=1
  443. activation=linear
  444. [softmax]
  445. groups=1