123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251 |
- #include "darknet.h"
- void train_cifar(char *cfgfile, char *weightfile)
- {
- srand(time(0));
- float avg_loss = -1;
- char *base = basecfg(cfgfile);
- printf("%s\n", base);
- network *net = load_network(cfgfile, weightfile, 0);
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
- char *backup_directory = "/home/pjreddie/backup/";
- int classes = 10;
- int N = 50000;
- char **labels = get_labels("data/cifar/labels.txt");
- int epoch = (*net->seen)/N;
- data train = load_all_cifar10();
- while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
- clock_t time=clock();
- float loss = train_network_sgd(net, train, 1);
- if(avg_loss == -1) avg_loss = loss;
- avg_loss = avg_loss*.95 + loss*.05;
- printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
- if(*net->seen/N > epoch){
- epoch = *net->seen/N;
- char buff[256];
- sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
- save_weights(net, buff);
- }
- if(get_current_batch(net)%100 == 0){
- char buff[256];
- sprintf(buff, "%s/%s.backup",backup_directory,base);
- save_weights(net, buff);
- }
- }
- char buff[256];
- sprintf(buff, "%s/%s.weights", backup_directory, base);
- save_weights(net, buff);
- free_network(net);
- free_ptrs((void**)labels, classes);
- free(base);
- free_data(train);
- }
- void train_cifar_distill(char *cfgfile, char *weightfile)
- {
- srand(time(0));
- float avg_loss = -1;
- char *base = basecfg(cfgfile);
- printf("%s\n", base);
- network *net = load_network(cfgfile, weightfile, 0);
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
- char *backup_directory = "/home/pjreddie/backup/";
- int classes = 10;
- int N = 50000;
- char **labels = get_labels("data/cifar/labels.txt");
- int epoch = (*net->seen)/N;
- data train = load_all_cifar10();
- matrix soft = csv_to_matrix("results/ensemble.csv");
- float weight = .9;
- scale_matrix(soft, weight);
- scale_matrix(train.y, 1. - weight);
- matrix_add_matrix(soft, train.y);
- while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
- clock_t time=clock();
- float loss = train_network_sgd(net, train, 1);
- if(avg_loss == -1) avg_loss = loss;
- avg_loss = avg_loss*.95 + loss*.05;
- printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net->seen);
- if(*net->seen/N > epoch){
- epoch = *net->seen/N;
- char buff[256];
- sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
- save_weights(net, buff);
- }
- if(get_current_batch(net)%100 == 0){
- char buff[256];
- sprintf(buff, "%s/%s.backup",backup_directory,base);
- save_weights(net, buff);
- }
- }
- char buff[256];
- sprintf(buff, "%s/%s.weights", backup_directory, base);
- save_weights(net, buff);
- free_network(net);
- free_ptrs((void**)labels, classes);
- free(base);
- free_data(train);
- }
- void test_cifar_multi(char *filename, char *weightfile)
- {
- network *net = load_network(filename, weightfile, 0);
- set_batch_network(net, 1);
- srand(time(0));
- float avg_acc = 0;
- data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
- int i;
- for(i = 0; i < test.X.rows; ++i){
- image im = float_to_image(32, 32, 3, test.X.vals[i]);
- float pred[10] = {0};
- float *p = network_predict(net, im.data);
- axpy_cpu(10, 1, p, 1, pred, 1);
- flip_image(im);
- p = network_predict(net, im.data);
- axpy_cpu(10, 1, p, 1, pred, 1);
- int index = max_index(pred, 10);
- int class = max_index(test.y.vals[i], 10);
- if(index == class) avg_acc += 1;
- free_image(im);
- printf("%4d: %.2f%%\n", i, 100.*avg_acc/(i+1));
- }
- }
- void test_cifar(char *filename, char *weightfile)
- {
- network *net = load_network(filename, weightfile, 0);
- srand(time(0));
- clock_t time;
- float avg_acc = 0;
- float avg_top5 = 0;
- data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
- time=clock();
- float *acc = network_accuracies(net, test, 2);
- avg_acc += acc[0];
- avg_top5 += acc[1];
- printf("top1: %f, %lf seconds, %d images\n", avg_acc, sec(clock()-time), test.X.rows);
- free_data(test);
- }
- void extract_cifar()
- {
- char *labels[] = {"airplane","automobile","bird","cat","deer","dog","frog","horse","ship","truck"};
- int i;
- data train = load_all_cifar10();
- data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
- for(i = 0; i < train.X.rows; ++i){
- image im = float_to_image(32, 32, 3, train.X.vals[i]);
- int class = max_index(train.y.vals[i], 10);
- char buff[256];
- sprintf(buff, "data/cifar/train/%d_%s",i,labels[class]);
- save_image_options(im, buff, PNG, 0);
- }
- for(i = 0; i < test.X.rows; ++i){
- image im = float_to_image(32, 32, 3, test.X.vals[i]);
- int class = max_index(test.y.vals[i], 10);
- char buff[256];
- sprintf(buff, "data/cifar/test/%d_%s",i,labels[class]);
- save_image_options(im, buff, PNG, 0);
- }
- }
- void test_cifar_csv(char *filename, char *weightfile)
- {
- network *net = load_network(filename, weightfile, 0);
- srand(time(0));
- data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
- matrix pred = network_predict_data(net, test);
- int i;
- for(i = 0; i < test.X.rows; ++i){
- image im = float_to_image(32, 32, 3, test.X.vals[i]);
- flip_image(im);
- }
- matrix pred2 = network_predict_data(net, test);
- scale_matrix(pred, .5);
- scale_matrix(pred2, .5);
- matrix_add_matrix(pred2, pred);
- matrix_to_csv(pred);
- fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
- free_data(test);
- }
- void test_cifar_csvtrain(char *cfg, char *weights)
- {
- network *net = load_network(cfg, weights, 0);
- srand(time(0));
- data test = load_all_cifar10();
- matrix pred = network_predict_data(net, test);
- int i;
- for(i = 0; i < test.X.rows; ++i){
- image im = float_to_image(32, 32, 3, test.X.vals[i]);
- flip_image(im);
- }
- matrix pred2 = network_predict_data(net, test);
- scale_matrix(pred, .5);
- scale_matrix(pred2, .5);
- matrix_add_matrix(pred2, pred);
- matrix_to_csv(pred);
- fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
- free_data(test);
- }
- void eval_cifar_csv()
- {
- data test = load_cifar10_data("data/cifar/cifar-10-batches-bin/test_batch.bin");
- matrix pred = csv_to_matrix("results/combined.csv");
- fprintf(stderr, "%d %d\n", pred.rows, pred.cols);
- fprintf(stderr, "Accuracy: %f\n", matrix_topk_accuracy(test.y, pred, 1));
- free_data(test);
- free_matrix(pred);
- }
- void run_cifar(int argc, char **argv)
- {
- if(argc < 4){
- fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
- return;
- }
- char *cfg = argv[3];
- char *weights = (argc > 4) ? argv[4] : 0;
- if(0==strcmp(argv[2], "train")) train_cifar(cfg, weights);
- else if(0==strcmp(argv[2], "extract")) extract_cifar();
- else if(0==strcmp(argv[2], "distill")) train_cifar_distill(cfg, weights);
- else if(0==strcmp(argv[2], "test")) test_cifar(cfg, weights);
- else if(0==strcmp(argv[2], "multi")) test_cifar_multi(cfg, weights);
- else if(0==strcmp(argv[2], "csv")) test_cifar_csv(cfg, weights);
- else if(0==strcmp(argv[2], "csvtrain")) test_cifar_csvtrain(cfg, weights);
- else if(0==strcmp(argv[2], "eval")) eval_cifar_csv();
- }
|