segmenter.c 7.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. #include "darknet.h"
  2. #include <sys/time.h>
  3. #include <assert.h>
  4. void train_segmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int display)
  5. {
  6. int i;
  7. float avg_loss = -1;
  8. char *base = basecfg(cfgfile);
  9. printf("%s\n", base);
  10. printf("%d\n", ngpus);
  11. network **nets = calloc(ngpus, sizeof(network*));
  12. srand(time(0));
  13. int seed = rand();
  14. for(i = 0; i < ngpus; ++i){
  15. srand(seed);
  16. #ifdef GPU
  17. cuda_set_device(gpus[i]);
  18. #endif
  19. nets[i] = load_network(cfgfile, weightfile, clear);
  20. nets[i]->learning_rate *= ngpus;
  21. }
  22. srand(time(0));
  23. network *net = nets[0];
  24. image pred = get_network_image(net);
  25. int div = net->w/pred.w;
  26. assert(pred.w * div == net->w);
  27. assert(pred.h * div == net->h);
  28. int imgs = net->batch * net->subdivisions * ngpus;
  29. printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
  30. list *options = read_data_cfg(datacfg);
  31. char *backup_directory = option_find_str(options, "backup", "/backup/");
  32. char *train_list = option_find_str(options, "train", "data/train.list");
  33. list *plist = get_paths(train_list);
  34. char **paths = (char **)list_to_array(plist);
  35. printf("%d\n", plist->size);
  36. int N = plist->size;
  37. load_args args = {0};
  38. args.w = net->w;
  39. args.h = net->h;
  40. args.threads = 32;
  41. args.scale = div;
  42. args.min = net->min_crop;
  43. args.max = net->max_crop;
  44. args.angle = net->angle;
  45. args.aspect = net->aspect;
  46. args.exposure = net->exposure;
  47. args.saturation = net->saturation;
  48. args.hue = net->hue;
  49. args.size = net->w;
  50. args.classes = 80;
  51. args.paths = paths;
  52. args.n = imgs;
  53. args.m = N;
  54. args.type = SEGMENTATION_DATA;
  55. data train;
  56. data buffer;
  57. pthread_t load_thread;
  58. args.d = &buffer;
  59. load_thread = load_data(args);
  60. int epoch = (*net->seen)/N;
  61. while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
  62. double time = what_time_is_it_now();
  63. pthread_join(load_thread, 0);
  64. train = buffer;
  65. load_thread = load_data(args);
  66. printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
  67. time = what_time_is_it_now();
  68. float loss = 0;
  69. #ifdef GPU
  70. if(ngpus == 1){
  71. loss = train_network(net, train);
  72. } else {
  73. loss = train_networks(nets, ngpus, train, 4);
  74. }
  75. #else
  76. loss = train_network(net, train);
  77. #endif
  78. if(display){
  79. image tr = float_to_image(net->w/div, net->h/div, 80, train.y.vals[net->batch*(net->subdivisions-1)]);
  80. image im = float_to_image(net->w, net->h, net->c, train.X.vals[net->batch*(net->subdivisions-1)]);
  81. image mask = mask_to_rgb(tr);
  82. image prmask = mask_to_rgb(pred);
  83. show_image(im, "input", 1);
  84. show_image(prmask, "pred", 1);
  85. show_image(mask, "truth", 100);
  86. free_image(mask);
  87. free_image(prmask);
  88. }
  89. if(avg_loss == -1) avg_loss = loss;
  90. avg_loss = avg_loss*.9 + loss*.1;
  91. printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
  92. free_data(train);
  93. if(*net->seen/N > epoch){
  94. epoch = *net->seen/N;
  95. char buff[256];
  96. sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
  97. save_weights(net, buff);
  98. }
  99. if(get_current_batch(net)%100 == 0){
  100. char buff[256];
  101. sprintf(buff, "%s/%s.backup",backup_directory,base);
  102. save_weights(net, buff);
  103. }
  104. }
  105. char buff[256];
  106. sprintf(buff, "%s/%s.weights", backup_directory, base);
  107. save_weights(net, buff);
  108. free_network(net);
  109. free_ptrs((void**)paths, plist->size);
  110. free_list(plist);
  111. free(base);
  112. }
  113. void predict_segmenter(char *datafile, char *cfg, char *weights, char *filename)
  114. {
  115. network *net = load_network(cfg, weights, 0);
  116. set_batch_network(net, 1);
  117. srand(2222222);
  118. clock_t time;
  119. char buff[256];
  120. char *input = buff;
  121. while(1){
  122. if(filename){
  123. strncpy(input, filename, 256);
  124. }else{
  125. printf("Enter Image Path: ");
  126. fflush(stdout);
  127. input = fgets(input, 256, stdin);
  128. if(!input) return;
  129. strtok(input, "\n");
  130. }
  131. image im = load_image_color(input, 0, 0);
  132. image sized = letterbox_image(im, net->w, net->h);
  133. float *X = sized.data;
  134. time=clock();
  135. float *predictions = network_predict(net, X);
  136. image pred = get_network_image(net);
  137. image prmask = mask_to_rgb(pred);
  138. printf("Predicted: %f\n", predictions[0]);
  139. printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
  140. show_image(sized, "orig", 1);
  141. show_image(prmask, "pred", 0);
  142. free_image(im);
  143. free_image(sized);
  144. free_image(prmask);
  145. if (filename) break;
  146. }
  147. }
  148. void demo_segmenter(char *datacfg, char *cfg, char *weights, int cam_index, const char *filename)
  149. {
  150. #ifdef OPENCV
  151. printf("Classifier Demo\n");
  152. network *net = load_network(cfg, weights, 0);
  153. set_batch_network(net, 1);
  154. srand(2222222);
  155. void * cap = open_video_stream(filename, cam_index, 0,0,0);
  156. if(!cap) error("Couldn't connect to webcam.\n");
  157. float fps = 0;
  158. while(1){
  159. struct timeval tval_before, tval_after, tval_result;
  160. gettimeofday(&tval_before, NULL);
  161. image in = get_image_from_stream(cap);
  162. image in_s = letterbox_image(in, net->w, net->h);
  163. network_predict(net, in_s.data);
  164. printf("\033[2J");
  165. printf("\033[1;1H");
  166. printf("\nFPS:%.0f\n",fps);
  167. image pred = get_network_image(net);
  168. image prmask = mask_to_rgb(pred);
  169. show_image(prmask, "Segmenter", 10);
  170. free_image(in_s);
  171. free_image(in);
  172. free_image(prmask);
  173. gettimeofday(&tval_after, NULL);
  174. timersub(&tval_after, &tval_before, &tval_result);
  175. float curr = 1000000.f/((long int)tval_result.tv_usec);
  176. fps = .9*fps + .1*curr;
  177. }
  178. #endif
  179. }
  180. void run_segmenter(int argc, char **argv)
  181. {
  182. if(argc < 4){
  183. fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
  184. return;
  185. }
  186. char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
  187. int *gpus = 0;
  188. int gpu = 0;
  189. int ngpus = 0;
  190. if(gpu_list){
  191. printf("%s\n", gpu_list);
  192. int len = strlen(gpu_list);
  193. ngpus = 1;
  194. int i;
  195. for(i = 0; i < len; ++i){
  196. if (gpu_list[i] == ',') ++ngpus;
  197. }
  198. gpus = calloc(ngpus, sizeof(int));
  199. for(i = 0; i < ngpus; ++i){
  200. gpus[i] = atoi(gpu_list);
  201. gpu_list = strchr(gpu_list, ',')+1;
  202. }
  203. } else {
  204. gpu = gpu_index;
  205. gpus = &gpu;
  206. ngpus = 1;
  207. }
  208. int cam_index = find_int_arg(argc, argv, "-c", 0);
  209. int clear = find_arg(argc, argv, "-clear");
  210. int display = find_arg(argc, argv, "-display");
  211. char *data = argv[3];
  212. char *cfg = argv[4];
  213. char *weights = (argc > 5) ? argv[5] : 0;
  214. char *filename = (argc > 6) ? argv[6]: 0;
  215. if(0==strcmp(argv[2], "test")) predict_segmenter(data, cfg, weights, filename);
  216. else if(0==strcmp(argv[2], "train")) train_segmenter(data, cfg, weights, gpus, ngpus, clear, display);
  217. else if(0==strcmp(argv[2], "demo")) demo_segmenter(data, cfg, weights, cam_index, filename);
  218. }