123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- #include "darknet.h"
- void train_writing(char *cfgfile, char *weightfile)
- {
- char *backup_directory = "/home/pjreddie/backup/";
- srand(time(0));
- float avg_loss = -1;
- char *base = basecfg(cfgfile);
- printf("%s\n", base);
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = net.batch*net.subdivisions;
- list *plist = get_paths("figures.list");
- char **paths = (char **)list_to_array(plist);
- clock_t time;
- int N = plist->size;
- printf("N: %d\n", N);
- image out = get_network_image(net);
- data train, buffer;
- load_args args = {0};
- args.w = net.w;
- args.h = net.h;
- args.out_w = out.w;
- args.out_h = out.h;
- args.paths = paths;
- args.n = imgs;
- args.m = N;
- args.d = &buffer;
- args.type = WRITING_DATA;
- pthread_t load_thread = load_data_in_thread(args);
- int epoch = (*net.seen)/N;
- while(get_current_batch(net) < net.max_batches || net.max_batches == 0){
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data_in_thread(args);
- printf("Loaded %lf seconds\n",sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- /*
- image pred = float_to_image(64, 64, 1, out);
- print_image(pred);
- */
- /*
- image im = float_to_image(256, 256, 3, train.X.vals[0]);
- image lab = float_to_image(64, 64, 1, train.y.vals[0]);
- image pred = float_to_image(64, 64, 1, out);
- show_image(im, "image");
- show_image(lab, "label");
- print_image(lab);
- show_image(pred, "pred");
- cvWaitKey(0);
- */
- if(avg_loss == -1) avg_loss = loss;
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen);
- free_data(train);
- if(get_current_batch(net)%100 == 0){
- char buff[256];
- sprintf(buff, "%s/%s_batch_%ld.weights", backup_directory, base, get_current_batch(net));
- save_weights(net, buff);
- }
- if(*net.seen/N > epoch){
- epoch = *net.seen/N;
- char buff[256];
- sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
- save_weights(net, buff);
- }
- }
- }
- void test_writing(char *cfgfile, char *weightfile, char *filename)
- {
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- set_batch_network(&net, 1);
- srand(2222222);
- clock_t time;
- char buff[256];
- char *input = buff;
- while(1){
- if(filename){
- strncpy(input, filename, 256);
- }else{
- printf("Enter Image Path: ");
- fflush(stdout);
- input = fgets(input, 256, stdin);
- if(!input) return;
- strtok(input, "\n");
- }
- image im = load_image_color(input, 0, 0);
- resize_network(&net, im.w, im.h);
- printf("%d %d %d\n", im.h, im.w, im.c);
- float *X = im.data;
- time=clock();
- network_predict(net, X);
- printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- image pred = get_network_image(net);
- image upsampled = resize_image(pred, im.w, im.h);
- image thresh = threshold_image(upsampled, .5);
- pred = thresh;
- show_image(pred, "prediction");
- show_image(im, "orig");
- #ifdef OPENCV
- cvWaitKey(0);
- cvDestroyAllWindows();
- #endif
- free_image(upsampled);
- free_image(thresh);
- free_image(im);
- if (filename) break;
- }
- }
- void run_writing(int argc, char **argv)
- {
- if(argc < 4){
- fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
- return;
- }
- char *cfg = argv[3];
- char *weights = (argc > 4) ? argv[4] : 0;
- char *filename = (argc > 5) ? argv[5] : 0;
- if(0==strcmp(argv[2], "train")) train_writing(cfg, weights);
- else if(0==strcmp(argv[2], "test")) test_writing(cfg, weights, filename);
- }
|