123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327 |
- #include "darknet.h"
- char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
- void train_yolo(char *cfgfile, char *weightfile)
- {
- char *train_images = "/data/voc/train.txt";
- char *backup_directory = "/home/pjreddie/backup/";
- srand(time(0));
- char *base = basecfg(cfgfile);
- printf("%s\n", base);
- float avg_loss = -1;
- network *net = load_network(cfgfile, weightfile, 0);
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
- int imgs = net->batch*net->subdivisions;
- int i = *net->seen/imgs;
- data train, buffer;
- layer l = net->layers[net->n - 1];
- int side = l.side;
- int classes = l.classes;
- float jitter = l.jitter;
- list *plist = get_paths(train_images);
- //int N = plist->size;
- char **paths = (char **)list_to_array(plist);
- load_args args = {0};
- args.w = net->w;
- args.h = net->h;
- args.paths = paths;
- args.n = imgs;
- args.m = plist->size;
- args.classes = classes;
- args.jitter = jitter;
- args.num_boxes = side;
- args.d = &buffer;
- args.type = REGION_DATA;
- args.angle = net->angle;
- args.exposure = net->exposure;
- args.saturation = net->saturation;
- args.hue = net->hue;
- pthread_t load_thread = load_data_in_thread(args);
- clock_t time;
- //while(i*imgs < N*120){
- while(get_current_batch(net) < net->max_batches){
- i += 1;
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data_in_thread(args);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- if (avg_loss < 0) avg_loss = loss;
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
- if(i%1000==0 || (i < 1000 && i%100 == 0)){
- char buff[256];
- sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
- save_weights(net, buff);
- }
- free_data(train);
- }
- char buff[256];
- sprintf(buff, "%s/%s_final.weights", backup_directory, base);
- save_weights(net, buff);
- }
- void print_yolo_detections(FILE **fps, char *id, int total, int classes, int w, int h, detection *dets)
- {
- int i, j;
- for(i = 0; i < total; ++i){
- float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
- float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
- float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
- float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
- if (xmin < 0) xmin = 0;
- if (ymin < 0) ymin = 0;
- if (xmax > w) xmax = w;
- if (ymax > h) ymax = h;
- for(j = 0; j < classes; ++j){
- if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j],
- xmin, ymin, xmax, ymax);
- }
- }
- }
- void validate_yolo(char *cfg, char *weights)
- {
- network *net = load_network(cfg, weights, 0);
- set_batch_network(net, 1);
- fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
- srand(time(0));
- char *base = "results/comp4_det_test_";
- //list *plist = get_paths("data/voc.2007.test");
- list *plist = get_paths("/home/pjreddie/data/voc/2007_test.txt");
- //list *plist = get_paths("data/voc.2012.test");
- char **paths = (char **)list_to_array(plist);
- layer l = net->layers[net->n-1];
- int classes = l.classes;
- int j;
- FILE **fps = calloc(classes, sizeof(FILE *));
- for(j = 0; j < classes; ++j){
- char buff[1024];
- snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
- fps[j] = fopen(buff, "w");
- }
- int m = plist->size;
- int i=0;
- int t;
- float thresh = .001;
- int nms = 1;
- float iou_thresh = .5;
- int nthreads = 8;
- image *val = calloc(nthreads, sizeof(image));
- image *val_resized = calloc(nthreads, sizeof(image));
- image *buf = calloc(nthreads, sizeof(image));
- image *buf_resized = calloc(nthreads, sizeof(image));
- pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
- load_args args = {0};
- args.w = net->w;
- args.h = net->h;
- args.type = IMAGE_DATA;
- for(t = 0; t < nthreads; ++t){
- args.path = paths[i+t];
- args.im = &buf[t];
- args.resized = &buf_resized[t];
- thr[t] = load_data_in_thread(args);
- }
- time_t start = time(0);
- for(i = nthreads; i < m+nthreads; i += nthreads){
- fprintf(stderr, "%d\n", i);
- for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
- pthread_join(thr[t], 0);
- val[t] = buf[t];
- val_resized[t] = buf_resized[t];
- }
- for(t = 0; t < nthreads && i+t < m; ++t){
- args.path = paths[i+t];
- args.im = &buf[t];
- args.resized = &buf_resized[t];
- thr[t] = load_data_in_thread(args);
- }
- for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
- char *path = paths[i+t-nthreads];
- char *id = basecfg(path);
- float *X = val_resized[t].data;
- network_predict(net, X);
- int w = val[t].w;
- int h = val[t].h;
- int nboxes = 0;
- detection *dets = get_network_boxes(net, w, h, thresh, 0, 0, 0, &nboxes);
- if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
- print_yolo_detections(fps, id, l.side*l.side*l.n, classes, w, h, dets);
- free_detections(dets, nboxes);
- free(id);
- free_image(val[t]);
- free_image(val_resized[t]);
- }
- }
- fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
- }
- void validate_yolo_recall(char *cfg, char *weights)
- {
- network *net = load_network(cfg, weights, 0);
- set_batch_network(net, 1);
- fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
- srand(time(0));
- char *base = "results/comp4_det_test_";
- list *plist = get_paths("data/voc.2007.test");
- char **paths = (char **)list_to_array(plist);
- layer l = net->layers[net->n-1];
- int classes = l.classes;
- int side = l.side;
- int j, k;
- FILE **fps = calloc(classes, sizeof(FILE *));
- for(j = 0; j < classes; ++j){
- char buff[1024];
- snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
- fps[j] = fopen(buff, "w");
- }
- int m = plist->size;
- int i=0;
- float thresh = .001;
- float iou_thresh = .5;
- float nms = 0;
- int total = 0;
- int correct = 0;
- int proposals = 0;
- float avg_iou = 0;
- for(i = 0; i < m; ++i){
- char *path = paths[i];
- image orig = load_image_color(path, 0, 0);
- image sized = resize_image(orig, net->w, net->h);
- char *id = basecfg(path);
- network_predict(net, sized.data);
- int nboxes = 0;
- detection *dets = get_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, &nboxes);
- if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
- char labelpath[4096];
- find_replace(path, "images", "labels", labelpath);
- find_replace(labelpath, "JPEGImages", "labels", labelpath);
- find_replace(labelpath, ".jpg", ".txt", labelpath);
- find_replace(labelpath, ".JPEG", ".txt", labelpath);
- int num_labels = 0;
- box_label *truth = read_boxes(labelpath, &num_labels);
- for(k = 0; k < side*side*l.n; ++k){
- if(dets[k].objectness > thresh){
- ++proposals;
- }
- }
- for (j = 0; j < num_labels; ++j) {
- ++total;
- box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
- float best_iou = 0;
- for(k = 0; k < side*side*l.n; ++k){
- float iou = box_iou(dets[k].bbox, t);
- if(dets[k].objectness > thresh && iou > best_iou){
- best_iou = iou;
- }
- }
- avg_iou += best_iou;
- if(best_iou > iou_thresh){
- ++correct;
- }
- }
- fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
- free_detections(dets, nboxes);
- free(id);
- free_image(orig);
- free_image(sized);
- }
- }
- void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
- {
- image **alphabet = load_alphabet();
- network *net = load_network(cfgfile, weightfile, 0);
- layer l = net->layers[net->n-1];
- set_batch_network(net, 1);
- srand(2222222);
- clock_t time;
- char buff[256];
- char *input = buff;
- float nms=.4;
- while(1){
- if(filename){
- strncpy(input, filename, 256);
- } else {
- printf("Enter Image Path: ");
- fflush(stdout);
- input = fgets(input, 256, stdin);
- if(!input) return;
- strtok(input, "\n");
- }
- image im = load_image_color(input,0,0);
- image sized = resize_image(im, net->w, net->h);
- float *X = sized.data;
- time=clock();
- network_predict(net, X);
- printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- int nboxes = 0;
- detection *dets = get_network_boxes(net, 1, 1, thresh, 0, 0, 0, &nboxes);
- if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
- draw_detections(im, dets, l.side*l.side*l.n, thresh, voc_names, alphabet, 20);
- save_image(im, "predictions");
- show_image(im, "predictions", 0);
- free_detections(dets, nboxes);
- free_image(im);
- free_image(sized);
- if (filename) break;
- }
- }
- void run_yolo(int argc, char **argv)
- {
- char *prefix = find_char_arg(argc, argv, "-prefix", 0);
- float thresh = find_float_arg(argc, argv, "-thresh", .2);
- int cam_index = find_int_arg(argc, argv, "-c", 0);
- int frame_skip = find_int_arg(argc, argv, "-s", 0);
- if(argc < 4){
- fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
- return;
- }
- int avg = find_int_arg(argc, argv, "-avg", 1);
- char *cfg = argv[3];
- char *weights = (argc > 4) ? argv[4] : 0;
- char *filename = (argc > 5) ? argv[5]: 0;
- if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
- else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
- else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
- else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
- else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, voc_names, 20, frame_skip, prefix, avg, .5, 0,0,0,0);
- }
|