|
@@ -1,73 +1,5 @@
|
|
|

|
|
|
|
|
|
-# Darknet #
|
|
|
-Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.
|
|
|
+Overwrite this repo on top of the original darknet neural network repo to get the one used by ArozOS system
|
|
|
|
|
|
-**Discord** invite link for for communication and questions: https://discord.gg/zSq8rtW
|
|
|
-
|
|
|
-## Scaled-YOLOv4:
|
|
|
-
|
|
|
-* **paper (CVPR 2021)**: https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Scaled-YOLOv4_Scaling_Cross_Stage_Partial_Network_CVPR_2021_paper.html
|
|
|
-
|
|
|
-* **source code - Pytorch (use to reproduce results):** https://github.com/WongKinYiu/ScaledYOLOv4
|
|
|
-
|
|
|
-* **source code - Darknet:** https://github.com/AlexeyAB/darknet
|
|
|
-
|
|
|
-* **Medium:** https://alexeyab84.medium.com/scaled-yolo-v4-is-the-best-neural-network-for-object-detection-on-ms-coco-dataset-39dfa22fa982?source=friends_link&sk=c8553bfed861b1a7932f739d26f487c8
|
|
|
-
|
|
|
-## YOLOv4:
|
|
|
-
|
|
|
-* **paper:** https://arxiv.org/abs/2004.10934
|
|
|
-
|
|
|
-* **source code:** https://github.com/AlexeyAB/darknet
|
|
|
-
|
|
|
-* **Wiki:** https://github.com/AlexeyAB/darknet/wiki
|
|
|
-
|
|
|
-* **useful links:** https://medium.com/@alexeyab84/yolov4-the-most-accurate-real-time-neural-network-on-ms-coco-dataset-73adfd3602fe?source=friends_link&sk=6039748846bbcf1d960c3061542591d7
|
|
|
-
|
|
|
-For more information see the [Darknet project website](http://pjreddie.com/darknet).
|
|
|
-
|
|
|
-
|
|
|
- https://paperswithcode.com/sota/object-detection-on-coco
|
|
|
-
|
|
|
-----
|
|
|
-
|
|
|
- AP50:95 - FPS (Tesla V100) Paper: https://arxiv.org/abs/2011.08036
|
|
|
-
|
|
|
-----
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-----
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-----
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-## Citation
|
|
|
-
|
|
|
-```
|
|
|
-@misc{bochkovskiy2020yolov4,
|
|
|
- title={YOLOv4: Optimal Speed and Accuracy of Object Detection},
|
|
|
- author={Alexey Bochkovskiy and Chien-Yao Wang and Hong-Yuan Mark Liao},
|
|
|
- year={2020},
|
|
|
- eprint={2004.10934},
|
|
|
- archivePrefix={arXiv},
|
|
|
- primaryClass={cs.CV}
|
|
|
-}
|
|
|
-```
|
|
|
-
|
|
|
-```
|
|
|
-@InProceedings{Wang_2021_CVPR,
|
|
|
- author = {Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
|
|
|
- title = {{Scaled-YOLOv4}: Scaling Cross Stage Partial Network},
|
|
|
- booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
|
|
- month = {June},
|
|
|
- year = {2021},
|
|
|
- pages = {13029-13038}
|
|
|
-}
|
|
|
-```
|
|
|
+DKLMEAA
|