123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459 |
- #include "darknet.h"
- #include <sys/time.h>
- #include <assert.h>
- void extend_data_truth(data *d, int n, float val)
- {
- int i, j;
- for(i = 0; i < d->y.rows; ++i){
- d->y.vals[i] = realloc(d->y.vals[i], (d->y.cols+n)*sizeof(float));
- for(j = 0; j < n; ++j){
- d->y.vals[i][d->y.cols + j] = val;
- }
- }
- d->y.cols += n;
- }
- matrix network_loss_data(network *net, data test)
- {
- int i,b;
- int k = 1;
- matrix pred = make_matrix(test.X.rows, k);
- float *X = calloc(net->batch*test.X.cols, sizeof(float));
- float *y = calloc(net->batch*test.y.cols, sizeof(float));
- for(i = 0; i < test.X.rows; i += net->batch){
- for(b = 0; b < net->batch; ++b){
- if(i+b == test.X.rows) break;
- memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float));
- memcpy(y+b*test.y.cols, test.y.vals[i+b], test.y.cols*sizeof(float));
- }
- network orig = *net;
- net->input = X;
- net->truth = y;
- net->train = 0;
- net->delta = 0;
- forward_network(net);
- *net = orig;
- float *delta = net->layers[net->n-1].output;
- for(b = 0; b < net->batch; ++b){
- if(i+b == test.X.rows) break;
- int t = max_index(y + b*test.y.cols, 1000);
- float err = sum_array(delta + b*net->outputs, net->outputs);
- pred.vals[i+b][0] = -err;
- //pred.vals[i+b][0] = 1-delta[b*net->outputs + t];
- }
- }
- free(X);
- free(y);
- return pred;
- }
- void train_attention(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear)
- {
- int i, j;
- float avg_cls_loss = -1;
- float avg_att_loss = -1;
- char *base = basecfg(cfgfile);
- printf("%s\n", base);
- printf("%d\n", ngpus);
- network **nets = calloc(ngpus, sizeof(network*));
- srand(time(0));
- int seed = rand();
- for(i = 0; i < ngpus; ++i){
- srand(seed);
- #ifdef GPU
- cuda_set_device(gpus[i]);
- #endif
- nets[i] = load_network(cfgfile, weightfile, clear);
- nets[i]->learning_rate *= ngpus;
- }
- srand(time(0));
- network *net = nets[0];
- int imgs = net->batch * net->subdivisions * ngpus;
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
- list *options = read_data_cfg(datacfg);
- char *backup_directory = option_find_str(options, "backup", "/backup/");
- char *label_list = option_find_str(options, "labels", "data/labels.list");
- char *train_list = option_find_str(options, "train", "data/train.list");
- int classes = option_find_int(options, "classes", 2);
- char **labels = get_labels(label_list);
- list *plist = get_paths(train_list);
- char **paths = (char **)list_to_array(plist);
- printf("%d\n", plist->size);
- int N = plist->size;
- double time;
- int divs=3;
- int size=2;
- load_args args = {0};
- args.w = divs*net->w/size;
- args.h = divs*net->h/size;
- args.size = divs*net->w/size;
- args.threads = 32;
- args.hierarchy = net->hierarchy;
- args.min = net->min_ratio*args.w;
- args.max = net->max_ratio*args.w;
- args.angle = net->angle;
- args.aspect = net->aspect;
- args.exposure = net->exposure;
- args.saturation = net->saturation;
- args.hue = net->hue;
- args.paths = paths;
- args.classes = classes;
- args.n = imgs;
- args.m = N;
- args.labels = labels;
- args.type = CLASSIFICATION_DATA;
- data train;
- data buffer;
- pthread_t load_thread;
- args.d = &buffer;
- load_thread = load_data(args);
- int epoch = (*net->seen)/N;
- while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
- time = what_time_is_it_now();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data(args);
- data resized = resize_data(train, net->w, net->h);
- extend_data_truth(&resized, divs*divs, 0);
- data *tiles = tile_data(train, divs, size);
- printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
- time = what_time_is_it_now();
- float aloss = 0;
- float closs = 0;
- int z;
- for (i = 0; i < divs*divs/ngpus; ++i) {
- #pragma omp parallel for
- for(j = 0; j < ngpus; ++j){
- int index = i*ngpus + j;
- extend_data_truth(tiles+index, divs*divs, SECRET_NUM);
- matrix deltas = network_loss_data(nets[j], tiles[index]);
- for(z = 0; z < resized.y.rows; ++z){
- resized.y.vals[z][train.y.cols + index] = deltas.vals[z][0];
- }
- free_matrix(deltas);
- }
- }
- int *inds = calloc(resized.y.rows, sizeof(int));
- for(z = 0; z < resized.y.rows; ++z){
- int index = max_index(resized.y.vals[z] + train.y.cols, divs*divs);
- inds[z] = index;
- for(i = 0; i < divs*divs; ++i){
- resized.y.vals[z][train.y.cols + i] = (i == index)? 1 : 0;
- }
- }
- data best = select_data(tiles, inds);
- free(inds);
- #ifdef GPU
- if (ngpus == 1) {
- closs = train_network(net, best);
- } else {
- closs = train_networks(nets, ngpus, best, 4);
- }
- #endif
- for (i = 0; i < divs*divs; ++i) {
- printf("%.2f ", resized.y.vals[0][train.y.cols + i]);
- if((i+1)%divs == 0) printf("\n");
- free_data(tiles[i]);
- }
- free_data(best);
- printf("\n");
- image im = float_to_image(64,64,3,resized.X.vals[0]);
- //show_image(im, "orig");
- //cvWaitKey(100);
- /*
- image im1 = float_to_image(64,64,3,tiles[i].X.vals[0]);
- image im2 = float_to_image(64,64,3,resized.X.vals[0]);
- show_image(im1, "tile");
- show_image(im2, "res");
- */
- #ifdef GPU
- if (ngpus == 1) {
- aloss = train_network(net, resized);
- } else {
- aloss = train_networks(nets, ngpus, resized, 4);
- }
- #endif
- for(i = 0; i < divs*divs; ++i){
- printf("%f ", nets[0]->output[1000 + i]);
- if ((i+1) % divs == 0) printf("\n");
- }
- printf("\n");
- free_data(resized);
- free_data(train);
- if(avg_cls_loss == -1) avg_cls_loss = closs;
- if(avg_att_loss == -1) avg_att_loss = aloss;
- avg_cls_loss = avg_cls_loss*.9 + closs*.1;
- avg_att_loss = avg_att_loss*.9 + aloss*.1;
- printf("%ld, %.3f: Att: %f, %f avg, Class: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, aloss, avg_att_loss, closs, avg_cls_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
- if(*net->seen/N > epoch){
- epoch = *net->seen/N;
- char buff[256];
- sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
- save_weights(net, buff);
- }
- if(get_current_batch(net)%1000 == 0){
- char buff[256];
- sprintf(buff, "%s/%s.backup",backup_directory,base);
- save_weights(net, buff);
- }
- }
- char buff[256];
- sprintf(buff, "%s/%s.weights", backup_directory, base);
- save_weights(net, buff);
- pthread_join(load_thread, 0);
- free_network(net);
- free_ptrs((void**)labels, classes);
- free_ptrs((void**)paths, plist->size);
- free_list(plist);
- free(base);
- }
- void validate_attention_single(char *datacfg, char *filename, char *weightfile)
- {
- int i, j;
- network *net = load_network(filename, weightfile, 0);
- set_batch_network(net, 1);
- srand(time(0));
- list *options = read_data_cfg(datacfg);
- char *label_list = option_find_str(options, "labels", "data/labels.list");
- char *leaf_list = option_find_str(options, "leaves", 0);
- if(leaf_list) change_leaves(net->hierarchy, leaf_list);
- char *valid_list = option_find_str(options, "valid", "data/train.list");
- int classes = option_find_int(options, "classes", 2);
- int topk = option_find_int(options, "top", 1);
- char **labels = get_labels(label_list);
- list *plist = get_paths(valid_list);
- char **paths = (char **)list_to_array(plist);
- int m = plist->size;
- free_list(plist);
- float avg_acc = 0;
- float avg_topk = 0;
- int *indexes = calloc(topk, sizeof(int));
- int divs = 4;
- int size = 2;
- int extra = 0;
- float *avgs = calloc(classes, sizeof(float));
- int *inds = calloc(divs*divs, sizeof(int));
- for(i = 0; i < m; ++i){
- int class = -1;
- char *path = paths[i];
- for(j = 0; j < classes; ++j){
- if(strstr(path, labels[j])){
- class = j;
- break;
- }
- }
- image im = load_image_color(paths[i], 0, 0);
- image resized = resize_min(im, net->w*divs/size);
- image crop = crop_image(resized, (resized.w - net->w*divs/size)/2, (resized.h - net->h*divs/size)/2, net->w*divs/size, net->h*divs/size);
- image rcrop = resize_image(crop, net->w, net->h);
- //show_image(im, "orig");
- //show_image(crop, "cropped");
- //cvWaitKey(0);
- float *pred = network_predict(net, rcrop.data);
- //pred[classes + 56] = 0;
- for(j = 0; j < divs*divs; ++j){
- printf("%.2f ", pred[classes + j]);
- if((j+1)%divs == 0) printf("\n");
- }
- printf("\n");
- copy_cpu(classes, pred, 1, avgs, 1);
- top_k(pred + classes, divs*divs, divs*divs, inds);
- show_image(crop, "crop");
- for(j = 0; j < extra; ++j){
- int index = inds[j];
- int row = index / divs;
- int col = index % divs;
- int y = row * crop.h / divs - (net->h - crop.h/divs)/2;
- int x = col * crop.w / divs - (net->w - crop.w/divs)/2;
- printf("%d %d %d %d\n", row, col, y, x);
- image tile = crop_image(crop, x, y, net->w, net->h);
- float *pred = network_predict(net, tile.data);
- axpy_cpu(classes, 1., pred, 1, avgs, 1);
- show_image(tile, "tile");
- //cvWaitKey(10);
- }
- if(net->hierarchy) hierarchy_predictions(pred, net->outputs, net->hierarchy, 1, 1);
- if(rcrop.data != resized.data) free_image(rcrop);
- if(resized.data != im.data) free_image(resized);
- free_image(im);
- free_image(crop);
- top_k(pred, classes, topk, indexes);
- if(indexes[0] == class) avg_acc += 1;
- for(j = 0; j < topk; ++j){
- if(indexes[j] == class) avg_topk += 1;
- }
- printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
- }
- }
- void validate_attention_multi(char *datacfg, char *filename, char *weightfile)
- {
- int i, j;
- network *net = load_network(filename, weightfile, 0);
- set_batch_network(net, 1);
- srand(time(0));
- list *options = read_data_cfg(datacfg);
- char *label_list = option_find_str(options, "labels", "data/labels.list");
- char *valid_list = option_find_str(options, "valid", "data/train.list");
- int classes = option_find_int(options, "classes", 2);
- int topk = option_find_int(options, "top", 1);
- char **labels = get_labels(label_list);
- list *plist = get_paths(valid_list);
- int scales[] = {224, 288, 320, 352, 384};
- int nscales = sizeof(scales)/sizeof(scales[0]);
- char **paths = (char **)list_to_array(plist);
- int m = plist->size;
- free_list(plist);
- float avg_acc = 0;
- float avg_topk = 0;
- int *indexes = calloc(topk, sizeof(int));
- for(i = 0; i < m; ++i){
- int class = -1;
- char *path = paths[i];
- for(j = 0; j < classes; ++j){
- if(strstr(path, labels[j])){
- class = j;
- break;
- }
- }
- float *pred = calloc(classes, sizeof(float));
- image im = load_image_color(paths[i], 0, 0);
- for(j = 0; j < nscales; ++j){
- image r = resize_min(im, scales[j]);
- resize_network(net, r.w, r.h);
- float *p = network_predict(net, r.data);
- if(net->hierarchy) hierarchy_predictions(p, net->outputs, net->hierarchy, 1 , 1);
- axpy_cpu(classes, 1, p, 1, pred, 1);
- flip_image(r);
- p = network_predict(net, r.data);
- axpy_cpu(classes, 1, p, 1, pred, 1);
- if(r.data != im.data) free_image(r);
- }
- free_image(im);
- top_k(pred, classes, topk, indexes);
- free(pred);
- if(indexes[0] == class) avg_acc += 1;
- for(j = 0; j < topk; ++j){
- if(indexes[j] == class) avg_topk += 1;
- }
- printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
- }
- }
- void predict_attention(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top)
- {
- network *net = load_network(cfgfile, weightfile, 0);
- set_batch_network(net, 1);
- srand(2222222);
- list *options = read_data_cfg(datacfg);
- char *name_list = option_find_str(options, "names", 0);
- if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list");
- if(top == 0) top = option_find_int(options, "top", 1);
- int i = 0;
- char **names = get_labels(name_list);
- clock_t time;
- int *indexes = calloc(top, sizeof(int));
- char buff[256];
- char *input = buff;
- while(1){
- if(filename){
- strncpy(input, filename, 256);
- }else{
- printf("Enter Image Path: ");
- fflush(stdout);
- input = fgets(input, 256, stdin);
- if(!input) return;
- strtok(input, "\n");
- }
- image im = load_image_color(input, 0, 0);
- image r = letterbox_image(im, net->w, net->h);
- //resize_network(&net, r.w, r.h);
- //printf("%d %d\n", r.w, r.h);
- float *X = r.data;
- time=clock();
- float *predictions = network_predict(net, X);
- if(net->hierarchy) hierarchy_predictions(predictions, net->outputs, net->hierarchy, 1, 1);
- top_k(predictions, net->outputs, top, indexes);
- fprintf(stderr, "%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- for(i = 0; i < top; ++i){
- int index = indexes[i];
- //if(net->hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net->hierarchy->parent[index] >= 0) ? names[net->hierarchy->parent[index]] : "Root");
- //else printf("%s: %f\n",names[index], predictions[index]);
- printf("%5.2f%%: %s\n", predictions[index]*100, names[index]);
- }
- if(r.data != im.data) free_image(r);
- free_image(im);
- if (filename) break;
- }
- }
- void run_attention(int argc, char **argv)
- {
- if(argc < 4){
- fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
- return;
- }
- char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
- int ngpus;
- int *gpus = read_intlist(gpu_list, &ngpus, gpu_index);
- int top = find_int_arg(argc, argv, "-t", 0);
- int clear = find_arg(argc, argv, "-clear");
- char *data = argv[3];
- char *cfg = argv[4];
- char *weights = (argc > 5) ? argv[5] : 0;
- char *filename = (argc > 6) ? argv[6]: 0;
- char *layer_s = (argc > 7) ? argv[7]: 0;
- if(0==strcmp(argv[2], "predict")) predict_attention(data, cfg, weights, filename, top);
- else if(0==strcmp(argv[2], "train")) train_attention(data, cfg, weights, gpus, ngpus, clear);
- else if(0==strcmp(argv[2], "valid")) validate_attention_single(data, cfg, weights);
- else if(0==strcmp(argv[2], "validmulti")) validate_attention_multi(data, cfg, weights);
- }
|