coco.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. #include "darknet.h"
  2. #include <stdio.h>
  3. char *coco_classes[] = {"person","bicycle","car","motorcycle","airplane","bus","train","truck","boat","traffic light","fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep","cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","donut","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"};
  4. int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90};
  5. void train_coco(char *cfgfile, char *weightfile)
  6. {
  7. //char *train_images = "/home/pjreddie/data/voc/test/train.txt";
  8. //char *train_images = "/home/pjreddie/data/coco/train.txt";
  9. char *train_images = "data/coco.trainval.txt";
  10. //char *train_images = "data/bags.train.list";
  11. char *backup_directory = "/home/pjreddie/backup/";
  12. srand(time(0));
  13. char *base = basecfg(cfgfile);
  14. printf("%s\n", base);
  15. float avg_loss = -1;
  16. network *net = load_network(cfgfile, weightfile, 0);
  17. printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
  18. int imgs = net->batch*net->subdivisions;
  19. int i = *net->seen/imgs;
  20. data train, buffer;
  21. layer l = net->layers[net->n - 1];
  22. int side = l.side;
  23. int classes = l.classes;
  24. float jitter = l.jitter;
  25. list *plist = get_paths(train_images);
  26. //int N = plist->size;
  27. char **paths = (char **)list_to_array(plist);
  28. load_args args = {0};
  29. args.w = net->w;
  30. args.h = net->h;
  31. args.paths = paths;
  32. args.n = imgs;
  33. args.m = plist->size;
  34. args.classes = classes;
  35. args.jitter = jitter;
  36. args.num_boxes = side;
  37. args.d = &buffer;
  38. args.type = REGION_DATA;
  39. args.angle = net->angle;
  40. args.exposure = net->exposure;
  41. args.saturation = net->saturation;
  42. args.hue = net->hue;
  43. pthread_t load_thread = load_data_in_thread(args);
  44. clock_t time;
  45. //while(i*imgs < N*120){
  46. while(get_current_batch(net) < net->max_batches){
  47. i += 1;
  48. time=clock();
  49. pthread_join(load_thread, 0);
  50. train = buffer;
  51. load_thread = load_data_in_thread(args);
  52. printf("Loaded: %lf seconds\n", sec(clock()-time));
  53. /*
  54. image im = float_to_image(net->w, net->h, 3, train.X.vals[113]);
  55. image copy = copy_image(im);
  56. draw_coco(copy, train.y.vals[113], 7, "truth");
  57. cvWaitKey(0);
  58. free_image(copy);
  59. */
  60. time=clock();
  61. float loss = train_network(net, train);
  62. if (avg_loss < 0) avg_loss = loss;
  63. avg_loss = avg_loss*.9 + loss*.1;
  64. printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
  65. if(i%1000==0 || (i < 1000 && i%100 == 0)){
  66. char buff[256];
  67. sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
  68. save_weights(net, buff);
  69. }
  70. if(i%100==0){
  71. char buff[256];
  72. sprintf(buff, "%s/%s.backup", backup_directory, base);
  73. save_weights(net, buff);
  74. }
  75. free_data(train);
  76. }
  77. char buff[256];
  78. sprintf(buff, "%s/%s_final.weights", backup_directory, base);
  79. save_weights(net, buff);
  80. }
  81. static void print_cocos(FILE *fp, int image_id, detection *dets, int num_boxes, int classes, int w, int h)
  82. {
  83. int i, j;
  84. for(i = 0; i < num_boxes; ++i){
  85. float xmin = dets[i].bbox.x - dets[i].bbox.w/2.;
  86. float xmax = dets[i].bbox.x + dets[i].bbox.w/2.;
  87. float ymin = dets[i].bbox.y - dets[i].bbox.h/2.;
  88. float ymax = dets[i].bbox.y + dets[i].bbox.h/2.;
  89. if (xmin < 0) xmin = 0;
  90. if (ymin < 0) ymin = 0;
  91. if (xmax > w) xmax = w;
  92. if (ymax > h) ymax = h;
  93. float bx = xmin;
  94. float by = ymin;
  95. float bw = xmax - xmin;
  96. float bh = ymax - ymin;
  97. for(j = 0; j < classes; ++j){
  98. if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]);
  99. }
  100. }
  101. }
  102. int get_coco_image_id(char *filename)
  103. {
  104. char *p = strrchr(filename, '_');
  105. return atoi(p+1);
  106. }
  107. void validate_coco(char *cfg, char *weights)
  108. {
  109. network *net = load_network(cfg, weights, 0);
  110. set_batch_network(net, 1);
  111. fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
  112. srand(time(0));
  113. char *base = "results/";
  114. list *plist = get_paths("data/coco_val_5k.list");
  115. //list *plist = get_paths("/home/pjreddie/data/people-art/test.txt");
  116. //list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
  117. char **paths = (char **)list_to_array(plist);
  118. layer l = net->layers[net->n-1];
  119. int classes = l.classes;
  120. char buff[1024];
  121. snprintf(buff, 1024, "%s/coco_results.json", base);
  122. FILE *fp = fopen(buff, "w");
  123. fprintf(fp, "[\n");
  124. int m = plist->size;
  125. int i=0;
  126. int t;
  127. float thresh = .01;
  128. int nms = 1;
  129. float iou_thresh = .5;
  130. int nthreads = 8;
  131. image *val = calloc(nthreads, sizeof(image));
  132. image *val_resized = calloc(nthreads, sizeof(image));
  133. image *buf = calloc(nthreads, sizeof(image));
  134. image *buf_resized = calloc(nthreads, sizeof(image));
  135. pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
  136. load_args args = {0};
  137. args.w = net->w;
  138. args.h = net->h;
  139. args.type = IMAGE_DATA;
  140. for(t = 0; t < nthreads; ++t){
  141. args.path = paths[i+t];
  142. args.im = &buf[t];
  143. args.resized = &buf_resized[t];
  144. thr[t] = load_data_in_thread(args);
  145. }
  146. time_t start = time(0);
  147. for(i = nthreads; i < m+nthreads; i += nthreads){
  148. fprintf(stderr, "%d\n", i);
  149. for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
  150. pthread_join(thr[t], 0);
  151. val[t] = buf[t];
  152. val_resized[t] = buf_resized[t];
  153. }
  154. for(t = 0; t < nthreads && i+t < m; ++t){
  155. args.path = paths[i+t];
  156. args.im = &buf[t];
  157. args.resized = &buf_resized[t];
  158. thr[t] = load_data_in_thread(args);
  159. }
  160. for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
  161. char *path = paths[i+t-nthreads];
  162. int image_id = get_coco_image_id(path);
  163. float *X = val_resized[t].data;
  164. network_predict(net, X);
  165. int w = val[t].w;
  166. int h = val[t].h;
  167. int nboxes = 0;
  168. detection *dets = get_network_boxes(net, w, h, thresh, 0, 0, 0, &nboxes);
  169. if (nms) do_nms_sort(dets, l.side*l.side*l.n, classes, iou_thresh);
  170. print_cocos(fp, image_id, dets, l.side*l.side*l.n, classes, w, h);
  171. free_detections(dets, nboxes);
  172. free_image(val[t]);
  173. free_image(val_resized[t]);
  174. }
  175. }
  176. fseek(fp, -2, SEEK_CUR);
  177. fprintf(fp, "\n]\n");
  178. fclose(fp);
  179. fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
  180. }
  181. void validate_coco_recall(char *cfgfile, char *weightfile)
  182. {
  183. network *net = load_network(cfgfile, weightfile, 0);
  184. set_batch_network(net, 1);
  185. fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
  186. srand(time(0));
  187. char *base = "results/comp4_det_test_";
  188. list *plist = get_paths("/home/pjreddie/data/voc/test/2007_test.txt");
  189. char **paths = (char **)list_to_array(plist);
  190. layer l = net->layers[net->n-1];
  191. int classes = l.classes;
  192. int side = l.side;
  193. int j, k;
  194. FILE **fps = calloc(classes, sizeof(FILE *));
  195. for(j = 0; j < classes; ++j){
  196. char buff[1024];
  197. snprintf(buff, 1024, "%s%s.txt", base, coco_classes[j]);
  198. fps[j] = fopen(buff, "w");
  199. }
  200. int m = plist->size;
  201. int i=0;
  202. float thresh = .001;
  203. int nms = 0;
  204. float iou_thresh = .5;
  205. int total = 0;
  206. int correct = 0;
  207. int proposals = 0;
  208. float avg_iou = 0;
  209. for(i = 0; i < m; ++i){
  210. char *path = paths[i];
  211. image orig = load_image_color(path, 0, 0);
  212. image sized = resize_image(orig, net->w, net->h);
  213. char *id = basecfg(path);
  214. network_predict(net, sized.data);
  215. int nboxes = 0;
  216. detection *dets = get_network_boxes(net, orig.w, orig.h, thresh, 0, 0, 1, &nboxes);
  217. if (nms) do_nms_obj(dets, side*side*l.n, 1, nms);
  218. char labelpath[4096];
  219. find_replace(path, "images", "labels", labelpath);
  220. find_replace(labelpath, "JPEGImages", "labels", labelpath);
  221. find_replace(labelpath, ".jpg", ".txt", labelpath);
  222. find_replace(labelpath, ".JPEG", ".txt", labelpath);
  223. int num_labels = 0;
  224. box_label *truth = read_boxes(labelpath, &num_labels);
  225. for(k = 0; k < side*side*l.n; ++k){
  226. if(dets[k].objectness > thresh){
  227. ++proposals;
  228. }
  229. }
  230. for (j = 0; j < num_labels; ++j) {
  231. ++total;
  232. box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
  233. float best_iou = 0;
  234. for(k = 0; k < side*side*l.n; ++k){
  235. float iou = box_iou(dets[k].bbox, t);
  236. if(dets[k].objectness > thresh && iou > best_iou){
  237. best_iou = iou;
  238. }
  239. }
  240. avg_iou += best_iou;
  241. if(best_iou > iou_thresh){
  242. ++correct;
  243. }
  244. }
  245. free_detections(dets, nboxes);
  246. fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
  247. free(id);
  248. free_image(orig);
  249. free_image(sized);
  250. }
  251. }
  252. void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh)
  253. {
  254. image **alphabet = load_alphabet();
  255. network *net = load_network(cfgfile, weightfile, 0);
  256. layer l = net->layers[net->n-1];
  257. set_batch_network(net, 1);
  258. srand(2222222);
  259. float nms = .4;
  260. clock_t time;
  261. char buff[256];
  262. char *input = buff;
  263. while(1){
  264. if(filename){
  265. strncpy(input, filename, 256);
  266. } else {
  267. printf("Enter Image Path: ");
  268. fflush(stdout);
  269. input = fgets(input, 256, stdin);
  270. if(!input) return;
  271. strtok(input, "\n");
  272. }
  273. image im = load_image_color(input,0,0);
  274. image sized = resize_image(im, net->w, net->h);
  275. float *X = sized.data;
  276. time=clock();
  277. network_predict(net, X);
  278. printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
  279. int nboxes = 0;
  280. detection *dets = get_network_boxes(net, 1, 1, thresh, 0, 0, 0, &nboxes);
  281. if (nms) do_nms_sort(dets, l.side*l.side*l.n, l.classes, nms);
  282. draw_detections(im, dets, l.side*l.side*l.n, thresh, coco_classes, alphabet, 80);
  283. save_image(im, "prediction");
  284. show_image(im, "predictions", 0);
  285. free_detections(dets, nboxes);
  286. free_image(im);
  287. free_image(sized);
  288. if (filename) break;
  289. }
  290. }
  291. void run_coco(int argc, char **argv)
  292. {
  293. char *prefix = find_char_arg(argc, argv, "-prefix", 0);
  294. float thresh = find_float_arg(argc, argv, "-thresh", .2);
  295. int cam_index = find_int_arg(argc, argv, "-c", 0);
  296. int frame_skip = find_int_arg(argc, argv, "-s", 0);
  297. if(argc < 4){
  298. fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
  299. return;
  300. }
  301. char *cfg = argv[3];
  302. char *weights = (argc > 4) ? argv[4] : 0;
  303. char *filename = (argc > 5) ? argv[5]: 0;
  304. int avg = find_int_arg(argc, argv, "-avg", 1);
  305. if(0==strcmp(argv[2], "test")) test_coco(cfg, weights, filename, thresh);
  306. else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights);
  307. else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights);
  308. else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights);
  309. else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, 80, frame_skip, prefix, avg, .5, 0,0,0,0);
  310. }