123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- #include "darknet.h"
- #include <time.h>
- #include <stdlib.h>
- #include <stdio.h>
- extern void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top);
- extern void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, char *outfile, int fullscreen);
- extern void run_yolo(int argc, char **argv);
- extern void run_detector(int argc, char **argv);
- extern void run_coco(int argc, char **argv);
- extern void run_nightmare(int argc, char **argv);
- extern void run_classifier(int argc, char **argv);
- extern void run_regressor(int argc, char **argv);
- extern void run_segmenter(int argc, char **argv);
- extern void run_isegmenter(int argc, char **argv);
- extern void run_char_rnn(int argc, char **argv);
- extern void run_tag(int argc, char **argv);
- extern void run_cifar(int argc, char **argv);
- extern void run_go(int argc, char **argv);
- extern void run_art(int argc, char **argv);
- extern void run_super(int argc, char **argv);
- extern void run_lsd(int argc, char **argv);
- void average(int argc, char *argv[])
- {
- char *cfgfile = argv[2];
- char *outfile = argv[3];
- gpu_index = -1;
- network *net = parse_network_cfg(cfgfile);
- network *sum = parse_network_cfg(cfgfile);
- char *weightfile = argv[4];
- load_weights(sum, weightfile);
- int i, j;
- int n = argc - 5;
- for(i = 0; i < n; ++i){
- weightfile = argv[i+5];
- load_weights(net, weightfile);
- for(j = 0; j < net->n; ++j){
- layer l = net->layers[j];
- layer out = sum->layers[j];
- if(l.type == CONVOLUTIONAL){
- int num = l.n*l.c*l.size*l.size;
- axpy_cpu(l.n, 1, l.biases, 1, out.biases, 1);
- axpy_cpu(num, 1, l.weights, 1, out.weights, 1);
- if(l.batch_normalize){
- axpy_cpu(l.n, 1, l.scales, 1, out.scales, 1);
- axpy_cpu(l.n, 1, l.rolling_mean, 1, out.rolling_mean, 1);
- axpy_cpu(l.n, 1, l.rolling_variance, 1, out.rolling_variance, 1);
- }
- }
- if(l.type == CONNECTED){
- axpy_cpu(l.outputs, 1, l.biases, 1, out.biases, 1);
- axpy_cpu(l.outputs*l.inputs, 1, l.weights, 1, out.weights, 1);
- }
- }
- }
- n = n+1;
- for(j = 0; j < net->n; ++j){
- layer l = sum->layers[j];
- if(l.type == CONVOLUTIONAL){
- int num = l.n*l.c*l.size*l.size;
- scal_cpu(l.n, 1./n, l.biases, 1);
- scal_cpu(num, 1./n, l.weights, 1);
- if(l.batch_normalize){
- scal_cpu(l.n, 1./n, l.scales, 1);
- scal_cpu(l.n, 1./n, l.rolling_mean, 1);
- scal_cpu(l.n, 1./n, l.rolling_variance, 1);
- }
- }
- if(l.type == CONNECTED){
- scal_cpu(l.outputs, 1./n, l.biases, 1);
- scal_cpu(l.outputs*l.inputs, 1./n, l.weights, 1);
- }
- }
- save_weights(sum, outfile);
- }
- long numops(network *net)
- {
- int i;
- long ops = 0;
- for(i = 0; i < net->n; ++i){
- layer l = net->layers[i];
- if(l.type == CONVOLUTIONAL){
- ops += 2l * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w;
- } else if(l.type == CONNECTED){
- ops += 2l * l.inputs * l.outputs;
- } else if (l.type == RNN){
- ops += 2l * l.input_layer->inputs * l.input_layer->outputs;
- ops += 2l * l.self_layer->inputs * l.self_layer->outputs;
- ops += 2l * l.output_layer->inputs * l.output_layer->outputs;
- } else if (l.type == GRU){
- ops += 2l * l.uz->inputs * l.uz->outputs;
- ops += 2l * l.uh->inputs * l.uh->outputs;
- ops += 2l * l.ur->inputs * l.ur->outputs;
- ops += 2l * l.wz->inputs * l.wz->outputs;
- ops += 2l * l.wh->inputs * l.wh->outputs;
- ops += 2l * l.wr->inputs * l.wr->outputs;
- } else if (l.type == LSTM){
- ops += 2l * l.uf->inputs * l.uf->outputs;
- ops += 2l * l.ui->inputs * l.ui->outputs;
- ops += 2l * l.ug->inputs * l.ug->outputs;
- ops += 2l * l.uo->inputs * l.uo->outputs;
- ops += 2l * l.wf->inputs * l.wf->outputs;
- ops += 2l * l.wi->inputs * l.wi->outputs;
- ops += 2l * l.wg->inputs * l.wg->outputs;
- ops += 2l * l.wo->inputs * l.wo->outputs;
- }
- }
- return ops;
- }
- void speed(char *cfgfile, int tics)
- {
- if (tics == 0) tics = 1000;
- network *net = parse_network_cfg(cfgfile);
- set_batch_network(net, 1);
- int i;
- double time=what_time_is_it_now();
- image im = make_image(net->w, net->h, net->c*net->batch);
- for(i = 0; i < tics; ++i){
- network_predict(net, im.data);
- }
- double t = what_time_is_it_now() - time;
- long ops = numops(net);
- printf("\n%d evals, %f Seconds\n", tics, t);
- printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
- printf("FLOPS: %.2f Bn\n", (float)ops/1000000000.*tics/t);
- printf("Speed: %f sec/eval\n", t/tics);
- printf("Speed: %f Hz\n", tics/t);
- }
- void operations(char *cfgfile)
- {
- gpu_index = -1;
- network *net = parse_network_cfg(cfgfile);
- long ops = numops(net);
- printf("Floating Point Operations: %ld\n", ops);
- printf("Floating Point Operations: %.2f Bn\n", (float)ops/1000000000.);
- }
- void oneoff(char *cfgfile, char *weightfile, char *outfile)
- {
- gpu_index = -1;
- network *net = parse_network_cfg(cfgfile);
- int oldn = net->layers[net->n - 2].n;
- int c = net->layers[net->n - 2].c;
- scal_cpu(oldn*c, .1, net->layers[net->n - 2].weights, 1);
- scal_cpu(oldn, 0, net->layers[net->n - 2].biases, 1);
- net->layers[net->n - 2].n = 11921;
- net->layers[net->n - 2].biases += 5;
- net->layers[net->n - 2].weights += 5*c;
- if(weightfile){
- load_weights(net, weightfile);
- }
- net->layers[net->n - 2].biases -= 5;
- net->layers[net->n - 2].weights -= 5*c;
- net->layers[net->n - 2].n = oldn;
- printf("%d\n", oldn);
- layer l = net->layers[net->n - 2];
- copy_cpu(l.n/3, l.biases, 1, l.biases + l.n/3, 1);
- copy_cpu(l.n/3, l.biases, 1, l.biases + 2*l.n/3, 1);
- copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + l.n/3*l.c, 1);
- copy_cpu(l.n/3*l.c, l.weights, 1, l.weights + 2*l.n/3*l.c, 1);
- *net->seen = 0;
- save_weights(net, outfile);
- }
- void oneoff2(char *cfgfile, char *weightfile, char *outfile, int l)
- {
- gpu_index = -1;
- network *net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights_upto(net, weightfile, 0, net->n);
- load_weights_upto(net, weightfile, l, net->n);
- }
- *net->seen = 0;
- save_weights_upto(net, outfile, net->n);
- }
- void partial(char *cfgfile, char *weightfile, char *outfile, int max)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 1);
- save_weights_upto(net, outfile, max);
- }
- void print_weights(char *cfgfile, char *weightfile, int n)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 1);
- layer l = net->layers[n];
- int i, j;
- //printf("[");
- for(i = 0; i < l.n; ++i){
- //printf("[");
- for(j = 0; j < l.size*l.size*l.c; ++j){
- //if(j > 0) printf(",");
- printf("%g ", l.weights[i*l.size*l.size*l.c + j]);
- }
- printf("\n");
- //printf("]%s\n", (i == l.n-1)?"":",");
- }
- //printf("]");
- }
- void rescale_net(char *cfgfile, char *weightfile, char *outfile)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 0);
- int i;
- for(i = 0; i < net->n; ++i){
- layer l = net->layers[i];
- if(l.type == CONVOLUTIONAL){
- rescale_weights(l, 2, -.5);
- break;
- }
- }
- save_weights(net, outfile);
- }
- void rgbgr_net(char *cfgfile, char *weightfile, char *outfile)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 0);
- int i;
- for(i = 0; i < net->n; ++i){
- layer l = net->layers[i];
- if(l.type == CONVOLUTIONAL){
- rgbgr_weights(l);
- break;
- }
- }
- save_weights(net, outfile);
- }
- void reset_normalize_net(char *cfgfile, char *weightfile, char *outfile)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 0);
- int i;
- for (i = 0; i < net->n; ++i) {
- layer l = net->layers[i];
- if (l.type == CONVOLUTIONAL && l.batch_normalize) {
- denormalize_convolutional_layer(l);
- }
- if (l.type == CONNECTED && l.batch_normalize) {
- denormalize_connected_layer(l);
- }
- if (l.type == GRU && l.batch_normalize) {
- denormalize_connected_layer(*l.input_z_layer);
- denormalize_connected_layer(*l.input_r_layer);
- denormalize_connected_layer(*l.input_h_layer);
- denormalize_connected_layer(*l.state_z_layer);
- denormalize_connected_layer(*l.state_r_layer);
- denormalize_connected_layer(*l.state_h_layer);
- }
- }
- save_weights(net, outfile);
- }
- layer normalize_layer(layer l, int n)
- {
- int j;
- l.batch_normalize=1;
- l.scales = calloc(n, sizeof(float));
- for(j = 0; j < n; ++j){
- l.scales[j] = 1;
- }
- l.rolling_mean = calloc(n, sizeof(float));
- l.rolling_variance = calloc(n, sizeof(float));
- return l;
- }
- void normalize_net(char *cfgfile, char *weightfile, char *outfile)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 0);
- int i;
- for(i = 0; i < net->n; ++i){
- layer l = net->layers[i];
- if(l.type == CONVOLUTIONAL && !l.batch_normalize){
- net->layers[i] = normalize_layer(l, l.n);
- }
- if (l.type == CONNECTED && !l.batch_normalize) {
- net->layers[i] = normalize_layer(l, l.outputs);
- }
- if (l.type == GRU && l.batch_normalize) {
- *l.input_z_layer = normalize_layer(*l.input_z_layer, l.input_z_layer->outputs);
- *l.input_r_layer = normalize_layer(*l.input_r_layer, l.input_r_layer->outputs);
- *l.input_h_layer = normalize_layer(*l.input_h_layer, l.input_h_layer->outputs);
- *l.state_z_layer = normalize_layer(*l.state_z_layer, l.state_z_layer->outputs);
- *l.state_r_layer = normalize_layer(*l.state_r_layer, l.state_r_layer->outputs);
- *l.state_h_layer = normalize_layer(*l.state_h_layer, l.state_h_layer->outputs);
- net->layers[i].batch_normalize=1;
- }
- }
- save_weights(net, outfile);
- }
- void statistics_net(char *cfgfile, char *weightfile)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 0);
- int i;
- for (i = 0; i < net->n; ++i) {
- layer l = net->layers[i];
- if (l.type == CONNECTED && l.batch_normalize) {
- printf("Connected Layer %d\n", i);
- statistics_connected_layer(l);
- }
- if (l.type == GRU && l.batch_normalize) {
- printf("GRU Layer %d\n", i);
- printf("Input Z\n");
- statistics_connected_layer(*l.input_z_layer);
- printf("Input R\n");
- statistics_connected_layer(*l.input_r_layer);
- printf("Input H\n");
- statistics_connected_layer(*l.input_h_layer);
- printf("State Z\n");
- statistics_connected_layer(*l.state_z_layer);
- printf("State R\n");
- statistics_connected_layer(*l.state_r_layer);
- printf("State H\n");
- statistics_connected_layer(*l.state_h_layer);
- }
- printf("\n");
- }
- }
- void denormalize_net(char *cfgfile, char *weightfile, char *outfile)
- {
- gpu_index = -1;
- network *net = load_network(cfgfile, weightfile, 0);
- int i;
- for (i = 0; i < net->n; ++i) {
- layer l = net->layers[i];
- if ((l.type == DECONVOLUTIONAL || l.type == CONVOLUTIONAL) && l.batch_normalize) {
- denormalize_convolutional_layer(l);
- net->layers[i].batch_normalize=0;
- }
- if (l.type == CONNECTED && l.batch_normalize) {
- denormalize_connected_layer(l);
- net->layers[i].batch_normalize=0;
- }
- if (l.type == GRU && l.batch_normalize) {
- denormalize_connected_layer(*l.input_z_layer);
- denormalize_connected_layer(*l.input_r_layer);
- denormalize_connected_layer(*l.input_h_layer);
- denormalize_connected_layer(*l.state_z_layer);
- denormalize_connected_layer(*l.state_r_layer);
- denormalize_connected_layer(*l.state_h_layer);
- l.input_z_layer->batch_normalize = 0;
- l.input_r_layer->batch_normalize = 0;
- l.input_h_layer->batch_normalize = 0;
- l.state_z_layer->batch_normalize = 0;
- l.state_r_layer->batch_normalize = 0;
- l.state_h_layer->batch_normalize = 0;
- net->layers[i].batch_normalize=0;
- }
- }
- save_weights(net, outfile);
- }
- void mkimg(char *cfgfile, char *weightfile, int h, int w, int num, char *prefix)
- {
- network *net = load_network(cfgfile, weightfile, 0);
- image *ims = get_weights(net->layers[0]);
- int n = net->layers[0].n;
- int z;
- for(z = 0; z < num; ++z){
- image im = make_image(h, w, 3);
- fill_image(im, .5);
- int i;
- for(i = 0; i < 100; ++i){
- image r = copy_image(ims[rand()%n]);
- rotate_image_cw(r, rand()%4);
- random_distort_image(r, 1, 1.5, 1.5);
- int dx = rand()%(w-r.w);
- int dy = rand()%(h-r.h);
- ghost_image(r, im, dx, dy);
- free_image(r);
- }
- char buff[256];
- sprintf(buff, "%s/gen_%d", prefix, z);
- save_image(im, buff);
- free_image(im);
- }
- }
- void visualize(char *cfgfile, char *weightfile)
- {
- network *net = load_network(cfgfile, weightfile, 0);
- visualize_network(net);
- }
- int main(int argc, char **argv)
- {
- //test_resize("data/bad.jpg");
- //test_box();
- //test_convolutional_layer();
- if(argc < 2){
- fprintf(stderr, "usage: %s <function>\n", argv[0]);
- return 0;
- }
- gpu_index = find_int_arg(argc, argv, "-i", 0);
- if(find_arg(argc, argv, "-nogpu")) {
- gpu_index = -1;
- }
- #ifndef GPU
- gpu_index = -1;
- #else
- if(gpu_index >= 0){
- cuda_set_device(gpu_index);
- }
- #endif
- if (0 == strcmp(argv[1], "average")){
- average(argc, argv);
- } else if (0 == strcmp(argv[1], "yolo")){
- run_yolo(argc, argv);
- } else if (0 == strcmp(argv[1], "super")){
- run_super(argc, argv);
- } else if (0 == strcmp(argv[1], "lsd")){
- run_lsd(argc, argv);
- } else if (0 == strcmp(argv[1], "detector")){
- run_detector(argc, argv);
- } else if (0 == strcmp(argv[1], "detect")){
- float thresh = find_float_arg(argc, argv, "-thresh", .5);
- char *filename = (argc > 4) ? argv[4]: 0;
- char *outfile = find_char_arg(argc, argv, "-out", 0);
- int fullscreen = find_arg(argc, argv, "-fullscreen");
- test_detector("cfg/coco.data", argv[2], argv[3], filename, thresh, .5, outfile, fullscreen);
- } else if (0 == strcmp(argv[1], "cifar")){
- run_cifar(argc, argv);
- } else if (0 == strcmp(argv[1], "go")){
- run_go(argc, argv);
- } else if (0 == strcmp(argv[1], "rnn")){
- run_char_rnn(argc, argv);
- } else if (0 == strcmp(argv[1], "coco")){
- run_coco(argc, argv);
- } else if (0 == strcmp(argv[1], "classify")){
- predict_classifier("cfg/imagenet1k.data", argv[2], argv[3], argv[4], 5);
- } else if (0 == strcmp(argv[1], "classifier")){
- run_classifier(argc, argv);
- } else if (0 == strcmp(argv[1], "regressor")){
- run_regressor(argc, argv);
- } else if (0 == strcmp(argv[1], "isegmenter")){
- run_isegmenter(argc, argv);
- } else if (0 == strcmp(argv[1], "segmenter")){
- run_segmenter(argc, argv);
- } else if (0 == strcmp(argv[1], "art")){
- run_art(argc, argv);
- } else if (0 == strcmp(argv[1], "tag")){
- run_tag(argc, argv);
- } else if (0 == strcmp(argv[1], "3d")){
- composite_3d(argv[2], argv[3], argv[4], (argc > 5) ? atof(argv[5]) : 0);
- } else if (0 == strcmp(argv[1], "test")){
- test_resize(argv[2]);
- } else if (0 == strcmp(argv[1], "nightmare")){
- run_nightmare(argc, argv);
- } else if (0 == strcmp(argv[1], "rgbgr")){
- rgbgr_net(argv[2], argv[3], argv[4]);
- } else if (0 == strcmp(argv[1], "reset")){
- reset_normalize_net(argv[2], argv[3], argv[4]);
- } else if (0 == strcmp(argv[1], "denormalize")){
- denormalize_net(argv[2], argv[3], argv[4]);
- } else if (0 == strcmp(argv[1], "statistics")){
- statistics_net(argv[2], argv[3]);
- } else if (0 == strcmp(argv[1], "normalize")){
- normalize_net(argv[2], argv[3], argv[4]);
- } else if (0 == strcmp(argv[1], "rescale")){
- rescale_net(argv[2], argv[3], argv[4]);
- } else if (0 == strcmp(argv[1], "ops")){
- operations(argv[2]);
- } else if (0 == strcmp(argv[1], "speed")){
- speed(argv[2], (argc > 3 && argv[3]) ? atoi(argv[3]) : 0);
- } else if (0 == strcmp(argv[1], "oneoff")){
- oneoff(argv[2], argv[3], argv[4]);
- } else if (0 == strcmp(argv[1], "oneoff2")){
- oneoff2(argv[2], argv[3], argv[4], atoi(argv[5]));
- } else if (0 == strcmp(argv[1], "print")){
- print_weights(argv[2], argv[3], atoi(argv[4]));
- } else if (0 == strcmp(argv[1], "partial")){
- partial(argv[2], argv[3], argv[4], atoi(argv[5]));
- } else if (0 == strcmp(argv[1], "average")){
- average(argc, argv);
- } else if (0 == strcmp(argv[1], "visualize")){
- visualize(argv[2], (argc > 3) ? argv[3] : 0);
- } else if (0 == strcmp(argv[1], "mkimg")){
- mkimg(argv[2], argv[3], atoi(argv[4]), atoi(argv[5]), atoi(argv[6]), argv[7]);
- } else if (0 == strcmp(argv[1], "imtest")){
- test_resize(argv[2]);
- } else {
- fprintf(stderr, "Not an option: %s\n", argv[1]);
- }
- return 0;
- }
|