instance-segmenter.c 7.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267
  1. #include "darknet.h"
  2. #include <sys/time.h>
  3. #include <assert.h>
  4. void normalize_image2(image p);
  5. void train_isegmenter(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int display)
  6. {
  7. int i;
  8. float avg_loss = -1;
  9. char *base = basecfg(cfgfile);
  10. printf("%s\n", base);
  11. printf("%d\n", ngpus);
  12. network **nets = calloc(ngpus, sizeof(network*));
  13. srand(time(0));
  14. int seed = rand();
  15. for(i = 0; i < ngpus; ++i){
  16. srand(seed);
  17. #ifdef GPU
  18. cuda_set_device(gpus[i]);
  19. #endif
  20. nets[i] = load_network(cfgfile, weightfile, clear);
  21. nets[i]->learning_rate *= ngpus;
  22. }
  23. srand(time(0));
  24. network *net = nets[0];
  25. image pred = get_network_image(net);
  26. image embed = pred;
  27. embed.c = 3;
  28. embed.data += embed.w*embed.h*80;
  29. int div = net->w/pred.w;
  30. assert(pred.w * div == net->w);
  31. assert(pred.h * div == net->h);
  32. int imgs = net->batch * net->subdivisions * ngpus;
  33. printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net->learning_rate, net->momentum, net->decay);
  34. list *options = read_data_cfg(datacfg);
  35. char *backup_directory = option_find_str(options, "backup", "/backup/");
  36. char *train_list = option_find_str(options, "train", "data/train.list");
  37. list *plist = get_paths(train_list);
  38. char **paths = (char **)list_to_array(plist);
  39. printf("%d\n", plist->size);
  40. int N = plist->size;
  41. load_args args = {0};
  42. args.w = net->w;
  43. args.h = net->h;
  44. args.threads = 32;
  45. args.scale = div;
  46. args.num_boxes = 90;
  47. args.min = net->min_crop;
  48. args.max = net->max_crop;
  49. args.angle = net->angle;
  50. args.aspect = net->aspect;
  51. args.exposure = net->exposure;
  52. args.saturation = net->saturation;
  53. args.hue = net->hue;
  54. args.size = net->w;
  55. args.classes = 80;
  56. args.paths = paths;
  57. args.n = imgs;
  58. args.m = N;
  59. args.type = ISEG_DATA;
  60. data train;
  61. data buffer;
  62. pthread_t load_thread;
  63. args.d = &buffer;
  64. load_thread = load_data(args);
  65. int epoch = (*net->seen)/N;
  66. while(get_current_batch(net) < net->max_batches || net->max_batches == 0){
  67. double time = what_time_is_it_now();
  68. pthread_join(load_thread, 0);
  69. train = buffer;
  70. load_thread = load_data(args);
  71. printf("Loaded: %lf seconds\n", what_time_is_it_now()-time);
  72. time = what_time_is_it_now();
  73. float loss = 0;
  74. #ifdef GPU
  75. if(ngpus == 1){
  76. loss = train_network(net, train);
  77. } else {
  78. loss = train_networks(nets, ngpus, train, 4);
  79. }
  80. #else
  81. loss = train_network(net, train);
  82. #endif
  83. if(display){
  84. image tr = float_to_image(net->w/div, net->h/div, 80, train.y.vals[net->batch*(net->subdivisions-1)]);
  85. image im = float_to_image(net->w, net->h, net->c, train.X.vals[net->batch*(net->subdivisions-1)]);
  86. pred.c = 80;
  87. image mask = mask_to_rgb(tr);
  88. image prmask = mask_to_rgb(pred);
  89. image ecopy = copy_image(embed);
  90. normalize_image2(ecopy);
  91. show_image(ecopy, "embed", 1);
  92. free_image(ecopy);
  93. show_image(im, "input", 1);
  94. show_image(prmask, "pred", 1);
  95. show_image(mask, "truth", 100);
  96. free_image(mask);
  97. free_image(prmask);
  98. }
  99. if(avg_loss == -1) avg_loss = loss;
  100. avg_loss = avg_loss*.9 + loss*.1;
  101. printf("%ld, %.3f: %f, %f avg, %f rate, %lf seconds, %ld images\n", get_current_batch(net), (float)(*net->seen)/N, loss, avg_loss, get_current_rate(net), what_time_is_it_now()-time, *net->seen);
  102. free_data(train);
  103. if(*net->seen/N > epoch){
  104. epoch = *net->seen/N;
  105. char buff[256];
  106. sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
  107. save_weights(net, buff);
  108. }
  109. if(get_current_batch(net)%100 == 0){
  110. char buff[256];
  111. sprintf(buff, "%s/%s.backup",backup_directory,base);
  112. save_weights(net, buff);
  113. }
  114. }
  115. char buff[256];
  116. sprintf(buff, "%s/%s.weights", backup_directory, base);
  117. save_weights(net, buff);
  118. free_network(net);
  119. free_ptrs((void**)paths, plist->size);
  120. free_list(plist);
  121. free(base);
  122. }
  123. void predict_isegmenter(char *datafile, char *cfg, char *weights, char *filename)
  124. {
  125. network *net = load_network(cfg, weights, 0);
  126. set_batch_network(net, 1);
  127. srand(2222222);
  128. clock_t time;
  129. char buff[256];
  130. char *input = buff;
  131. while(1){
  132. if(filename){
  133. strncpy(input, filename, 256);
  134. }else{
  135. printf("Enter Image Path: ");
  136. fflush(stdout);
  137. input = fgets(input, 256, stdin);
  138. if(!input) return;
  139. strtok(input, "\n");
  140. }
  141. image im = load_image_color(input, 0, 0);
  142. image sized = letterbox_image(im, net->w, net->h);
  143. float *X = sized.data;
  144. time=clock();
  145. float *predictions = network_predict(net, X);
  146. image pred = get_network_image(net);
  147. image prmask = mask_to_rgb(pred);
  148. printf("Predicted: %f\n", predictions[0]);
  149. printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
  150. show_image(sized, "orig", 1);
  151. show_image(prmask, "pred", 0);
  152. free_image(im);
  153. free_image(sized);
  154. free_image(prmask);
  155. if (filename) break;
  156. }
  157. }
  158. void demo_isegmenter(char *datacfg, char *cfg, char *weights, int cam_index, const char *filename)
  159. {
  160. #ifdef OPENCV
  161. printf("Classifier Demo\n");
  162. network *net = load_network(cfg, weights, 0);
  163. set_batch_network(net, 1);
  164. srand(2222222);
  165. void * cap = open_video_stream(filename, cam_index, 0,0,0);
  166. if(!cap) error("Couldn't connect to webcam.\n");
  167. float fps = 0;
  168. while(1){
  169. struct timeval tval_before, tval_after, tval_result;
  170. gettimeofday(&tval_before, NULL);
  171. image in = get_image_from_stream(cap);
  172. image in_s = letterbox_image(in, net->w, net->h);
  173. network_predict(net, in_s.data);
  174. printf("\033[2J");
  175. printf("\033[1;1H");
  176. printf("\nFPS:%.0f\n",fps);
  177. image pred = get_network_image(net);
  178. image prmask = mask_to_rgb(pred);
  179. show_image(prmask, "Segmenter", 10);
  180. free_image(in_s);
  181. free_image(in);
  182. free_image(prmask);
  183. gettimeofday(&tval_after, NULL);
  184. timersub(&tval_after, &tval_before, &tval_result);
  185. float curr = 1000000.f/((long int)tval_result.tv_usec);
  186. fps = .9*fps + .1*curr;
  187. }
  188. #endif
  189. }
  190. void run_isegmenter(int argc, char **argv)
  191. {
  192. if(argc < 4){
  193. fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
  194. return;
  195. }
  196. char *gpu_list = find_char_arg(argc, argv, "-gpus", 0);
  197. int *gpus = 0;
  198. int gpu = 0;
  199. int ngpus = 0;
  200. if(gpu_list){
  201. printf("%s\n", gpu_list);
  202. int len = strlen(gpu_list);
  203. ngpus = 1;
  204. int i;
  205. for(i = 0; i < len; ++i){
  206. if (gpu_list[i] == ',') ++ngpus;
  207. }
  208. gpus = calloc(ngpus, sizeof(int));
  209. for(i = 0; i < ngpus; ++i){
  210. gpus[i] = atoi(gpu_list);
  211. gpu_list = strchr(gpu_list, ',')+1;
  212. }
  213. } else {
  214. gpu = gpu_index;
  215. gpus = &gpu;
  216. ngpus = 1;
  217. }
  218. int cam_index = find_int_arg(argc, argv, "-c", 0);
  219. int clear = find_arg(argc, argv, "-clear");
  220. int display = find_arg(argc, argv, "-display");
  221. char *data = argv[3];
  222. char *cfg = argv[4];
  223. char *weights = (argc > 5) ? argv[5] : 0;
  224. char *filename = (argc > 6) ? argv[6]: 0;
  225. if(0==strcmp(argv[2], "test")) predict_isegmenter(data, cfg, weights, filename);
  226. else if(0==strcmp(argv[2], "train")) train_isegmenter(data, cfg, weights, gpus, ngpus, clear, display);
  227. else if(0==strcmp(argv[2], "demo")) demo_isegmenter(data, cfg, weights, cam_index, filename);
  228. }