123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156 |
- from ctypes import *
- import math
- import random
- def sample(probs):
- s = sum(probs)
- probs = [a/s for a in probs]
- r = random.uniform(0, 1)
- for i in range(len(probs)):
- r = r - probs[i]
- if r <= 0:
- return i
- return len(probs)-1
- def c_array(ctype, values):
- arr = (ctype*len(values))()
- arr[:] = values
- return arr
- class BOX(Structure):
- _fields_ = [("x", c_float),
- ("y", c_float),
- ("w", c_float),
- ("h", c_float)]
- class DETECTION(Structure):
- _fields_ = [("bbox", BOX),
- ("classes", c_int),
- ("prob", POINTER(c_float)),
- ("mask", POINTER(c_float)),
- ("objectness", c_float),
- ("sort_class", c_int)]
- class IMAGE(Structure):
- _fields_ = [("w", c_int),
- ("h", c_int),
- ("c", c_int),
- ("data", POINTER(c_float))]
- class METADATA(Structure):
- _fields_ = [("classes", c_int),
- ("names", POINTER(c_char_p))]
-
- #lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
- lib = CDLL("libdarknet.so", RTLD_GLOBAL)
- lib.network_width.argtypes = [c_void_p]
- lib.network_width.restype = c_int
- lib.network_height.argtypes = [c_void_p]
- lib.network_height.restype = c_int
- predict = lib.network_predict
- predict.argtypes = [c_void_p, POINTER(c_float)]
- predict.restype = POINTER(c_float)
- set_gpu = lib.cuda_set_device
- set_gpu.argtypes = [c_int]
- make_image = lib.make_image
- make_image.argtypes = [c_int, c_int, c_int]
- make_image.restype = IMAGE
- get_network_boxes = lib.get_network_boxes
- get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int)]
- get_network_boxes.restype = POINTER(DETECTION)
- make_network_boxes = lib.make_network_boxes
- make_network_boxes.argtypes = [c_void_p]
- make_network_boxes.restype = POINTER(DETECTION)
- free_detections = lib.free_detections
- free_detections.argtypes = [POINTER(DETECTION), c_int]
- free_ptrs = lib.free_ptrs
- free_ptrs.argtypes = [POINTER(c_void_p), c_int]
- network_predict = lib.network_predict
- network_predict.argtypes = [c_void_p, POINTER(c_float)]
- reset_rnn = lib.reset_rnn
- reset_rnn.argtypes = [c_void_p]
- load_net = lib.load_network
- load_net.argtypes = [c_char_p, c_char_p, c_int]
- load_net.restype = c_void_p
- do_nms_obj = lib.do_nms_obj
- do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
- do_nms_sort = lib.do_nms_sort
- do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
- free_image = lib.free_image
- free_image.argtypes = [IMAGE]
- letterbox_image = lib.letterbox_image
- letterbox_image.argtypes = [IMAGE, c_int, c_int]
- letterbox_image.restype = IMAGE
- load_meta = lib.get_metadata
- lib.get_metadata.argtypes = [c_char_p]
- lib.get_metadata.restype = METADATA
- load_image = lib.load_image_color
- load_image.argtypes = [c_char_p, c_int, c_int]
- load_image.restype = IMAGE
- rgbgr_image = lib.rgbgr_image
- rgbgr_image.argtypes = [IMAGE]
- predict_image = lib.network_predict_image
- predict_image.argtypes = [c_void_p, IMAGE]
- predict_image.restype = POINTER(c_float)
- def classify(net, meta, im):
- out = predict_image(net, im)
- res = []
- for i in range(meta.classes):
- res.append((meta.names[i], out[i]))
- res = sorted(res, key=lambda x: -x[1])
- return res
- def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45):
- im = load_image(image, 0, 0)
- num = c_int(0)
- pnum = pointer(num)
- predict_image(net, im)
- dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum)
- num = pnum[0]
- if (nms): do_nms_obj(dets, num, meta.classes, nms);
- res = []
- for j in range(num):
- for i in range(meta.classes):
- if dets[j].prob[i] > 0:
- b = dets[j].bbox
- res.append((meta.names[i], dets[j].prob[i], (b.x, b.y, b.w, b.h)))
- res = sorted(res, key=lambda x: -x[1])
- free_image(im)
- free_detections(dets, num)
- return res
-
- if __name__ == "__main__":
- #net = load_net("cfg/densenet201.cfg", "/home/pjreddie/trained/densenet201.weights", 0)
- #im = load_image("data/wolf.jpg", 0, 0)
- #meta = load_meta("cfg/imagenet1k.data")
- #r = classify(net, meta, im)
- #print r[:10]
- net = load_net("cfg/tiny-yolo.cfg", "tiny-yolo.weights", 0)
- meta = load_meta("cfg/coco.data")
- r = detect(net, meta, "data/dog.jpg")
- print r
-
|