123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- #include "l2norm_layer.h"
- #include "activations.h"
- #include "blas.h"
- #include "cuda.h"
- #include <float.h>
- #include <math.h>
- #include <stdlib.h>
- #include <stdio.h>
- #include <assert.h>
- layer make_l2norm_layer(int batch, int inputs)
- {
- fprintf(stderr, "l2norm %4d\n", inputs);
- layer l = {0};
- l.type = L2NORM;
- l.batch = batch;
- l.inputs = inputs;
- l.outputs = inputs;
- l.output = calloc(inputs*batch, sizeof(float));
- l.scales = calloc(inputs*batch, sizeof(float));
- l.delta = calloc(inputs*batch, sizeof(float));
- l.forward = forward_l2norm_layer;
- l.backward = backward_l2norm_layer;
- #ifdef GPU
- l.forward_gpu = forward_l2norm_layer_gpu;
- l.backward_gpu = backward_l2norm_layer_gpu;
- l.output_gpu = cuda_make_array(l.output, inputs*batch);
- l.scales_gpu = cuda_make_array(l.output, inputs*batch);
- l.delta_gpu = cuda_make_array(l.delta, inputs*batch);
- #endif
- return l;
- }
- void forward_l2norm_layer(const layer l, network net)
- {
- copy_cpu(l.outputs*l.batch, net.input, 1, l.output, 1);
- l2normalize_cpu(l.output, l.scales, l.batch, l.out_c, l.out_w*l.out_h);
- }
- void backward_l2norm_layer(const layer l, network net)
- {
- //axpy_cpu(l.inputs*l.batch, 1, l.scales, 1, l.delta, 1);
- axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, net.delta, 1);
- }
- #ifdef GPU
- void forward_l2norm_layer_gpu(const layer l, network net)
- {
- copy_gpu(l.outputs*l.batch, net.input_gpu, 1, l.output_gpu, 1);
- l2normalize_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_w*l.out_h);
- }
- void backward_l2norm_layer_gpu(const layer l, network net)
- {
- axpy_gpu(l.batch*l.inputs, 1, l.scales_gpu, 1, l.delta_gpu, 1);
- axpy_gpu(l.batch*l.inputs, 1, l.delta_gpu, 1, net.delta_gpu, 1);
- }
- #endif
|