resnet34.cfg 4.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392
  1. [net]
  2. # Training
  3. # batch=128
  4. # subdivisions=2
  5. # Testing
  6. batch=1
  7. subdivisions=1
  8. height=256
  9. width=256
  10. channels=3
  11. min_crop=128
  12. max_crop=448
  13. burn_in=1000
  14. learning_rate=0.1
  15. policy=poly
  16. power=4
  17. max_batches=800000
  18. momentum=0.9
  19. decay=0.0005
  20. angle=7
  21. hue=.1
  22. saturation=.75
  23. exposure=.75
  24. aspect=.75
  25. [convolutional]
  26. batch_normalize=1
  27. filters=64
  28. size=7
  29. stride=2
  30. pad=1
  31. activation=leaky
  32. [maxpool]
  33. size=2
  34. stride=2
  35. # Residual Block
  36. [convolutional]
  37. batch_normalize=1
  38. filters=64
  39. size=3
  40. stride=1
  41. pad=1
  42. activation=leaky
  43. [convolutional]
  44. batch_normalize=1
  45. filters=64
  46. size=3
  47. stride=1
  48. pad=1
  49. activation=linear
  50. [shortcut]
  51. activation=leaky
  52. from=-3
  53. # Residual Block
  54. [convolutional]
  55. batch_normalize=1
  56. filters=64
  57. size=3
  58. stride=1
  59. pad=1
  60. activation=leaky
  61. [convolutional]
  62. batch_normalize=1
  63. filters=64
  64. size=3
  65. stride=1
  66. pad=1
  67. activation=linear
  68. [shortcut]
  69. activation=leaky
  70. from=-3
  71. # Residual Block
  72. [convolutional]
  73. batch_normalize=1
  74. filters=64
  75. size=3
  76. stride=1
  77. pad=1
  78. activation=leaky
  79. [convolutional]
  80. batch_normalize=1
  81. filters=64
  82. size=3
  83. stride=1
  84. pad=1
  85. activation=linear
  86. [shortcut]
  87. activation=leaky
  88. from=-3
  89. # Strided Residual Block
  90. [convolutional]
  91. batch_normalize=1
  92. filters=128
  93. size=3
  94. stride=2
  95. pad=1
  96. activation=leaky
  97. [convolutional]
  98. batch_normalize=1
  99. filters=128
  100. size=3
  101. stride=1
  102. pad=1
  103. activation=linear
  104. [shortcut]
  105. activation=leaky
  106. from=-3
  107. # Residual Block
  108. [convolutional]
  109. batch_normalize=1
  110. filters=128
  111. size=3
  112. stride=1
  113. pad=1
  114. activation=leaky
  115. [convolutional]
  116. batch_normalize=1
  117. filters=128
  118. size=3
  119. stride=1
  120. pad=1
  121. activation=linear
  122. [shortcut]
  123. activation=leaky
  124. from=-3
  125. # Residual Block
  126. [convolutional]
  127. batch_normalize=1
  128. filters=128
  129. size=3
  130. stride=1
  131. pad=1
  132. activation=leaky
  133. [convolutional]
  134. batch_normalize=1
  135. filters=128
  136. size=3
  137. stride=1
  138. pad=1
  139. activation=linear
  140. [shortcut]
  141. activation=leaky
  142. from=-3
  143. # Residual Block
  144. [convolutional]
  145. batch_normalize=1
  146. filters=128
  147. size=3
  148. stride=1
  149. pad=1
  150. activation=leaky
  151. [convolutional]
  152. batch_normalize=1
  153. filters=128
  154. size=3
  155. stride=1
  156. pad=1
  157. activation=linear
  158. [shortcut]
  159. activation=leaky
  160. from=-3
  161. # Strided Residual Block
  162. [convolutional]
  163. batch_normalize=1
  164. filters=256
  165. size=3
  166. stride=2
  167. pad=1
  168. activation=leaky
  169. [convolutional]
  170. batch_normalize=1
  171. filters=256
  172. size=3
  173. stride=1
  174. pad=1
  175. activation=linear
  176. [shortcut]
  177. activation=leaky
  178. from=-3
  179. # Residual Block
  180. [convolutional]
  181. batch_normalize=1
  182. filters=256
  183. size=3
  184. stride=1
  185. pad=1
  186. activation=leaky
  187. [convolutional]
  188. batch_normalize=1
  189. filters=256
  190. size=3
  191. stride=1
  192. pad=1
  193. activation=linear
  194. [shortcut]
  195. activation=leaky
  196. from=-3
  197. # Residual Block
  198. [convolutional]
  199. batch_normalize=1
  200. filters=256
  201. size=3
  202. stride=1
  203. pad=1
  204. activation=leaky
  205. [convolutional]
  206. batch_normalize=1
  207. filters=256
  208. size=3
  209. stride=1
  210. pad=1
  211. activation=linear
  212. [shortcut]
  213. activation=leaky
  214. from=-3
  215. # Residual Block
  216. [convolutional]
  217. batch_normalize=1
  218. filters=256
  219. size=3
  220. stride=1
  221. pad=1
  222. activation=leaky
  223. [convolutional]
  224. batch_normalize=1
  225. filters=256
  226. size=3
  227. stride=1
  228. pad=1
  229. activation=linear
  230. [shortcut]
  231. activation=leaky
  232. from=-3
  233. # Residual Block
  234. [convolutional]
  235. batch_normalize=1
  236. filters=256
  237. size=3
  238. stride=1
  239. pad=1
  240. activation=leaky
  241. [convolutional]
  242. batch_normalize=1
  243. filters=256
  244. size=3
  245. stride=1
  246. pad=1
  247. activation=linear
  248. [shortcut]
  249. activation=leaky
  250. from=-3
  251. # Residual Block
  252. [convolutional]
  253. batch_normalize=1
  254. filters=256
  255. size=3
  256. stride=1
  257. pad=1
  258. activation=leaky
  259. [convolutional]
  260. batch_normalize=1
  261. filters=256
  262. size=3
  263. stride=1
  264. pad=1
  265. activation=linear
  266. [shortcut]
  267. activation=leaky
  268. from=-3
  269. # Residual Block
  270. [convolutional]
  271. batch_normalize=1
  272. filters=512
  273. size=3
  274. stride=2
  275. pad=1
  276. activation=leaky
  277. [convolutional]
  278. batch_normalize=1
  279. filters=512
  280. size=3
  281. stride=1
  282. pad=1
  283. activation=linear
  284. [shortcut]
  285. activation=leaky
  286. from=-3
  287. # Residual Block
  288. [convolutional]
  289. batch_normalize=1
  290. filters=512
  291. size=3
  292. stride=1
  293. pad=1
  294. activation=leaky
  295. [convolutional]
  296. batch_normalize=1
  297. filters=512
  298. size=3
  299. stride=1
  300. pad=1
  301. activation=linear
  302. [shortcut]
  303. activation=leaky
  304. from=-3
  305. # Residual Block
  306. [convolutional]
  307. batch_normalize=1
  308. filters=512
  309. size=3
  310. stride=1
  311. pad=1
  312. activation=leaky
  313. [convolutional]
  314. batch_normalize=1
  315. filters=512
  316. size=3
  317. stride=1
  318. pad=1
  319. activation=linear
  320. [shortcut]
  321. activation=leaky
  322. from=-3
  323. [avgpool]
  324. [convolutional]
  325. filters=1000
  326. size=1
  327. stride=1
  328. pad=1
  329. activation=linear
  330. [softmax]
  331. groups=1