extraction.conv.cfg 1.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179
  1. [net]
  2. batch=1
  3. subdivisions=1
  4. height=256
  5. width=256
  6. channels=3
  7. momentum=0.9
  8. decay=0.0005
  9. learning_rate=0.5
  10. policy=poly
  11. power=6
  12. max_batches=500000
  13. [convolutional]
  14. filters=64
  15. size=7
  16. stride=2
  17. pad=1
  18. activation=leaky
  19. [maxpool]
  20. size=2
  21. stride=2
  22. [convolutional]
  23. filters=192
  24. size=3
  25. stride=1
  26. pad=1
  27. activation=leaky
  28. [maxpool]
  29. size=2
  30. stride=2
  31. [convolutional]
  32. filters=128
  33. size=1
  34. stride=1
  35. pad=1
  36. activation=leaky
  37. [convolutional]
  38. filters=256
  39. size=3
  40. stride=1
  41. pad=1
  42. activation=leaky
  43. [convolutional]
  44. filters=256
  45. size=1
  46. stride=1
  47. pad=1
  48. activation=leaky
  49. [convolutional]
  50. filters=512
  51. size=3
  52. stride=1
  53. pad=1
  54. activation=leaky
  55. [maxpool]
  56. size=2
  57. stride=2
  58. [convolutional]
  59. filters=256
  60. size=1
  61. stride=1
  62. pad=1
  63. activation=leaky
  64. [convolutional]
  65. filters=512
  66. size=3
  67. stride=1
  68. pad=1
  69. activation=leaky
  70. [convolutional]
  71. filters=256
  72. size=1
  73. stride=1
  74. pad=1
  75. activation=leaky
  76. [convolutional]
  77. filters=512
  78. size=3
  79. stride=1
  80. pad=1
  81. activation=leaky
  82. [convolutional]
  83. filters=256
  84. size=1
  85. stride=1
  86. pad=1
  87. activation=leaky
  88. [convolutional]
  89. filters=512
  90. size=3
  91. stride=1
  92. pad=1
  93. activation=leaky
  94. [convolutional]
  95. filters=256
  96. size=1
  97. stride=1
  98. pad=1
  99. activation=leaky
  100. [convolutional]
  101. filters=512
  102. size=3
  103. stride=1
  104. pad=1
  105. activation=leaky
  106. [convolutional]
  107. filters=512
  108. size=1
  109. stride=1
  110. pad=1
  111. activation=leaky
  112. [convolutional]
  113. filters=1024
  114. size=3
  115. stride=1
  116. pad=1
  117. activation=leaky
  118. [maxpool]
  119. size=2
  120. stride=2
  121. [convolutional]
  122. filters=512
  123. size=1
  124. stride=1
  125. pad=1
  126. activation=leaky
  127. [convolutional]
  128. filters=1024
  129. size=3
  130. stride=1
  131. pad=1
  132. activation=leaky
  133. [convolutional]
  134. filters=512
  135. size=1
  136. stride=1
  137. pad=1
  138. activation=leaky
  139. [convolutional]
  140. filters=1024
  141. size=3
  142. stride=1
  143. pad=1
  144. activation=leaky
  145. [avgpool]
  146. [connected]
  147. output=1000
  148. activation=leaky
  149. [softmax]
  150. groups=1