jnet-conv.cfg 1.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118
  1. [net]
  2. batch=1
  3. subdivisions=1
  4. height=10
  5. width=10
  6. channels=3
  7. learning_rate=0.01
  8. momentum=0.9
  9. decay=0.0005
  10. [convolutional]
  11. filters=32
  12. size=3
  13. stride=1
  14. pad=1
  15. activation=leaky
  16. [convolutional]
  17. filters=32
  18. size=3
  19. stride=1
  20. pad=1
  21. activation=leaky
  22. [maxpool]
  23. stride=2
  24. size=2
  25. [convolutional]
  26. filters=64
  27. size=3
  28. stride=1
  29. pad=1
  30. activation=leaky
  31. [convolutional]
  32. filters=64
  33. size=3
  34. stride=1
  35. pad=1
  36. activation=leaky
  37. [maxpool]
  38. stride=2
  39. size=2
  40. [convolutional]
  41. filters=128
  42. size=3
  43. stride=1
  44. pad=1
  45. activation=leaky
  46. [convolutional]
  47. filters=128
  48. size=3
  49. stride=1
  50. pad=1
  51. activation=leaky
  52. [maxpool]
  53. stride=2
  54. size=2
  55. [convolutional]
  56. filters=256
  57. size=3
  58. stride=1
  59. pad=1
  60. activation=leaky
  61. [convolutional]
  62. filters=256
  63. size=3
  64. stride=1
  65. pad=1
  66. activation=leaky
  67. [maxpool]
  68. stride=2
  69. size=2
  70. [convolutional]
  71. filters=512
  72. size=3
  73. stride=1
  74. pad=1
  75. activation=leaky
  76. [convolutional]
  77. filters=512
  78. size=3
  79. stride=1
  80. pad=1
  81. activation=leaky
  82. [maxpool]
  83. stride=2
  84. size=2
  85. [convolutional]
  86. filters=1024
  87. size=3
  88. stride=1
  89. pad=1
  90. activation=leaky
  91. [convolutional]
  92. filters=1024
  93. size=3
  94. stride=1
  95. pad=1
  96. activation=leaky
  97. [maxpool]
  98. size=2
  99. stride=2