vgg-conv.cfg 1.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121
  1. [net]
  2. batch=1
  3. subdivisions=1
  4. width=224
  5. height=224
  6. channels=3
  7. learning_rate=0.00001
  8. momentum=0.9
  9. decay=0.0005
  10. [convolutional]
  11. filters=64
  12. size=3
  13. stride=1
  14. pad=1
  15. activation=relu
  16. [convolutional]
  17. filters=64
  18. size=3
  19. stride=1
  20. pad=1
  21. activation=relu
  22. [maxpool]
  23. size=2
  24. stride=2
  25. [convolutional]
  26. filters=128
  27. size=3
  28. stride=1
  29. pad=1
  30. activation=relu
  31. [convolutional]
  32. filters=128
  33. size=3
  34. stride=1
  35. pad=1
  36. activation=relu
  37. [maxpool]
  38. size=2
  39. stride=2
  40. [convolutional]
  41. filters=256
  42. size=3
  43. stride=1
  44. pad=1
  45. activation=relu
  46. [convolutional]
  47. filters=256
  48. size=3
  49. stride=1
  50. pad=1
  51. activation=relu
  52. [convolutional]
  53. filters=256
  54. size=3
  55. stride=1
  56. pad=1
  57. activation=relu
  58. [maxpool]
  59. size=2
  60. stride=2
  61. [convolutional]
  62. filters=512
  63. size=3
  64. stride=1
  65. pad=1
  66. activation=relu
  67. [convolutional]
  68. filters=512
  69. size=3
  70. stride=1
  71. pad=1
  72. activation=relu
  73. [convolutional]
  74. filters=512
  75. size=3
  76. stride=1
  77. pad=1
  78. activation=relu
  79. [maxpool]
  80. size=2
  81. stride=2
  82. [convolutional]
  83. filters=512
  84. size=3
  85. stride=1
  86. pad=1
  87. activation=relu
  88. [convolutional]
  89. filters=512
  90. size=3
  91. stride=1
  92. pad=1
  93. activation=relu
  94. [convolutional]
  95. filters=512
  96. size=3
  97. stride=1
  98. pad=1
  99. activation=relu
  100. [maxpool]
  101. size=2
  102. stride=2