123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208 |
- #include "darknet.h"
- #ifdef OPENCV
- image get_image_from_stream(CvCapture *cap);
- image ipl_to_image(IplImage* src);
- void reconstruct_picture(network net, float *features, image recon, image update, float rate, float momentum, float lambda, int smooth_size, int iters);
- typedef struct {
- float *x;
- float *y;
- } float_pair;
- float_pair get_rnn_vid_data(network net, char **files, int n, int batch, int steps)
- {
- int b;
- assert(net.batch == steps + 1);
- image out_im = get_network_image(net);
- int output_size = out_im.w*out_im.h*out_im.c;
- printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
- float *feats = calloc(net.batch*batch*output_size, sizeof(float));
- for(b = 0; b < batch; ++b){
- int input_size = net.w*net.h*net.c;
- float *input = calloc(input_size*net.batch, sizeof(float));
- char *filename = files[rand()%n];
- CvCapture *cap = cvCaptureFromFile(filename);
- int frames = cvGetCaptureProperty(cap, CV_CAP_PROP_FRAME_COUNT);
- int index = rand() % (frames - steps - 2);
- if (frames < (steps + 4)){
- --b;
- free(input);
- continue;
- }
- printf("frames: %d, index: %d\n", frames, index);
- cvSetCaptureProperty(cap, CV_CAP_PROP_POS_FRAMES, index);
- int i;
- for(i = 0; i < net.batch; ++i){
- IplImage* src = cvQueryFrame(cap);
- image im = ipl_to_image(src);
- rgbgr_image(im);
- image re = resize_image(im, net.w, net.h);
- //show_image(re, "loaded");
- //cvWaitKey(10);
- memcpy(input + i*input_size, re.data, input_size*sizeof(float));
- free_image(im);
- free_image(re);
- }
- float *output = network_predict(net, input);
- free(input);
- for(i = 0; i < net.batch; ++i){
- memcpy(feats + (b + i*batch)*output_size, output + i*output_size, output_size*sizeof(float));
- }
- cvReleaseCapture(&cap);
- }
- //printf("%d %d %d\n", out_im.w, out_im.h, out_im.c);
- float_pair p = {0};
- p.x = feats;
- p.y = feats + output_size*batch; //+ out_im.w*out_im.h*out_im.c;
- return p;
- }
- void train_vid_rnn(char *cfgfile, char *weightfile)
- {
- char *train_videos = "data/vid/train.txt";
- char *backup_directory = "/home/pjreddie/backup/";
- srand(time(0));
- char *base = basecfg(cfgfile);
- printf("%s\n", base);
- float avg_loss = -1;
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = net.batch*net.subdivisions;
- int i = *net.seen/imgs;
- list *plist = get_paths(train_videos);
- int N = plist->size;
- char **paths = (char **)list_to_array(plist);
- clock_t time;
- int steps = net.time_steps;
- int batch = net.batch / net.time_steps;
- network extractor = parse_network_cfg("cfg/extractor.cfg");
- load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
- while(get_current_batch(net) < net.max_batches){
- i += 1;
- time=clock();
- float_pair p = get_rnn_vid_data(extractor, paths, N, batch, steps);
- copy_cpu(net.inputs*net.batch, p.x, 1, net.input, 1);
- copy_cpu(net.truths*net.batch, p.y, 1, net.truth, 1);
- float loss = train_network_datum(net) / (net.batch);
- free(p.x);
- if (avg_loss < 0) avg_loss = loss;
- avg_loss = avg_loss*.9 + loss*.1;
- fprintf(stderr, "%d: %f, %f avg, %f rate, %lf seconds\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time));
- if(i%100==0){
- char buff[256];
- sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
- save_weights(net, buff);
- }
- if(i%10==0){
- char buff[256];
- sprintf(buff, "%s/%s.backup", backup_directory, base);
- save_weights(net, buff);
- }
- }
- char buff[256];
- sprintf(buff, "%s/%s_final.weights", backup_directory, base);
- save_weights(net, buff);
- }
- image save_reconstruction(network net, image *init, float *feat, char *name, int i)
- {
- image recon;
- if (init) {
- recon = copy_image(*init);
- } else {
- recon = make_random_image(net.w, net.h, 3);
- }
- image update = make_image(net.w, net.h, 3);
- reconstruct_picture(net, feat, recon, update, .01, .9, .1, 2, 50);
- char buff[256];
- sprintf(buff, "%s%d", name, i);
- save_image(recon, buff);
- free_image(update);
- return recon;
- }
- void generate_vid_rnn(char *cfgfile, char *weightfile)
- {
- network extractor = parse_network_cfg("cfg/extractor.recon.cfg");
- load_weights(&extractor, "/home/pjreddie/trained/yolo-coco.conv");
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- set_batch_network(&extractor, 1);
- set_batch_network(&net, 1);
- int i;
- CvCapture *cap = cvCaptureFromFile("/extra/vid/ILSVRC2015/Data/VID/snippets/val/ILSVRC2015_val_00007030.mp4");
- float *feat;
- float *next;
- image last;
- for(i = 0; i < 25; ++i){
- image im = get_image_from_stream(cap);
- image re = resize_image(im, extractor.w, extractor.h);
- feat = network_predict(extractor, re.data);
- if(i > 0){
- printf("%f %f\n", mean_array(feat, 14*14*512), variance_array(feat, 14*14*512));
- printf("%f %f\n", mean_array(next, 14*14*512), variance_array(next, 14*14*512));
- printf("%f\n", mse_array(feat, 14*14*512));
- axpy_cpu(14*14*512, -1, feat, 1, next, 1);
- printf("%f\n", mse_array(next, 14*14*512));
- }
- next = network_predict(net, feat);
- free_image(im);
- free_image(save_reconstruction(extractor, 0, feat, "feat", i));
- free_image(save_reconstruction(extractor, 0, next, "next", i));
- if (i==24) last = copy_image(re);
- free_image(re);
- }
- for(i = 0; i < 30; ++i){
- next = network_predict(net, next);
- image new = save_reconstruction(extractor, &last, next, "new", i);
- free_image(last);
- last = new;
- }
- }
- void run_vid_rnn(int argc, char **argv)
- {
- if(argc < 4){
- fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
- return;
- }
- char *cfg = argv[3];
- char *weights = (argc > 4) ? argv[4] : 0;
- //char *filename = (argc > 5) ? argv[5]: 0;
- if(0==strcmp(argv[2], "train")) train_vid_rnn(cfg, weights);
- else if(0==strcmp(argv[2], "generate")) generate_vid_rnn(cfg, weights);
- }
- #else
- void run_vid_rnn(int argc, char **argv){}
- #endif
|