123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806 |
- #ifndef DARKNET_API
- #define DARKNET_API
- #include <stdlib.h>
- #include <stdio.h>
- #include <string.h>
- #include <pthread.h>
- #include <time.h>
- #ifdef GPU
- #define BLOCK 512
- #include "cuda_runtime.h"
- #include "curand.h"
- #include "cublas_v2.h"
- #ifdef CUDNN
- #include "cudnn.h"
- #endif
- #endif
- #ifdef __cplusplus
- extern "C" {
- #endif
- #define SECRET_NUM -1234
- extern int gpu_index;
- typedef struct{
- int classes;
- char **names;
- } metadata;
- metadata get_metadata(char *file);
- typedef struct{
- int *leaf;
- int n;
- int *parent;
- int *child;
- int *group;
- char **name;
- int groups;
- int *group_size;
- int *group_offset;
- } tree;
- tree *read_tree(char *filename);
- typedef enum{
- LOGISTIC, RELU, RELIE, LINEAR, RAMP, TANH, PLSE, LEAKY, ELU, LOGGY, STAIR, HARDTAN, LHTAN, SELU
- } ACTIVATION;
- typedef enum{
- PNG, BMP, TGA, JPG
- } IMTYPE;
- typedef enum{
- MULT, ADD, SUB, DIV
- } BINARY_ACTIVATION;
- typedef enum {
- CONVOLUTIONAL,
- DECONVOLUTIONAL,
- CONNECTED,
- MAXPOOL,
- SOFTMAX,
- DETECTION,
- DROPOUT,
- CROP,
- ROUTE,
- COST,
- NORMALIZATION,
- AVGPOOL,
- LOCAL,
- SHORTCUT,
- ACTIVE,
- RNN,
- GRU,
- LSTM,
- CRNN,
- BATCHNORM,
- NETWORK,
- XNOR,
- REGION,
- YOLO,
- ISEG,
- REORG,
- UPSAMPLE,
- LOGXENT,
- L2NORM,
- BLANK
- } LAYER_TYPE;
- typedef enum{
- SSE, MASKED, L1, SEG, SMOOTH,WGAN
- } COST_TYPE;
- typedef struct{
- int batch;
- float learning_rate;
- float momentum;
- float decay;
- int adam;
- float B1;
- float B2;
- float eps;
- int t;
- } update_args;
- struct network;
- typedef struct network network;
- struct layer;
- typedef struct layer layer;
- struct layer{
- LAYER_TYPE type;
- ACTIVATION activation;
- COST_TYPE cost_type;
- void (*forward) (struct layer, struct network);
- void (*backward) (struct layer, struct network);
- void (*update) (struct layer, update_args);
- void (*forward_gpu) (struct layer, struct network);
- void (*backward_gpu) (struct layer, struct network);
- void (*update_gpu) (struct layer, update_args);
- int batch_normalize;
- int shortcut;
- int batch;
- int forced;
- int flipped;
- int inputs;
- int outputs;
- int nweights;
- int nbiases;
- int extra;
- int truths;
- int h,w,c;
- int out_h, out_w, out_c;
- int n;
- int max_boxes;
- int groups;
- int size;
- int side;
- int stride;
- int reverse;
- int flatten;
- int spatial;
- int pad;
- int sqrt;
- int flip;
- int index;
- int binary;
- int xnor;
- int steps;
- int hidden;
- int truth;
- float smooth;
- float dot;
- float angle;
- float jitter;
- float saturation;
- float exposure;
- float shift;
- float ratio;
- float learning_rate_scale;
- float clip;
- int noloss;
- int softmax;
- int classes;
- int coords;
- int background;
- int rescore;
- int objectness;
- int joint;
- int noadjust;
- int reorg;
- int log;
- int tanh;
- int *mask;
- int total;
- float alpha;
- float beta;
- float kappa;
- float coord_scale;
- float object_scale;
- float noobject_scale;
- float mask_scale;
- float class_scale;
- int bias_match;
- int random;
- float ignore_thresh;
- float truth_thresh;
- float thresh;
- float focus;
- int classfix;
- int absolute;
- int onlyforward;
- int stopbackward;
- int dontload;
- int dontsave;
- int dontloadscales;
- int numload;
- float temperature;
- float probability;
- float scale;
- char * cweights;
- int * indexes;
- int * input_layers;
- int * input_sizes;
- int * map;
- int * counts;
- float ** sums;
- float * rand;
- float * cost;
- float * state;
- float * prev_state;
- float * forgot_state;
- float * forgot_delta;
- float * state_delta;
- float * combine_cpu;
- float * combine_delta_cpu;
- float * concat;
- float * concat_delta;
- float * binary_weights;
- float * biases;
- float * bias_updates;
- float * scales;
- float * scale_updates;
- float * weights;
- float * weight_updates;
- float * delta;
- float * output;
- float * loss;
- float * squared;
- float * norms;
- float * spatial_mean;
- float * mean;
- float * variance;
- float * mean_delta;
- float * variance_delta;
- float * rolling_mean;
- float * rolling_variance;
- float * x;
- float * x_norm;
- float * m;
- float * v;
-
- float * bias_m;
- float * bias_v;
- float * scale_m;
- float * scale_v;
- float *z_cpu;
- float *r_cpu;
- float *h_cpu;
- float * prev_state_cpu;
- float *temp_cpu;
- float *temp2_cpu;
- float *temp3_cpu;
- float *dh_cpu;
- float *hh_cpu;
- float *prev_cell_cpu;
- float *cell_cpu;
- float *f_cpu;
- float *i_cpu;
- float *g_cpu;
- float *o_cpu;
- float *c_cpu;
- float *dc_cpu;
- float * binary_input;
- struct layer *input_layer;
- struct layer *self_layer;
- struct layer *output_layer;
- struct layer *reset_layer;
- struct layer *update_layer;
- struct layer *state_layer;
- struct layer *input_gate_layer;
- struct layer *state_gate_layer;
- struct layer *input_save_layer;
- struct layer *state_save_layer;
- struct layer *input_state_layer;
- struct layer *state_state_layer;
- struct layer *input_z_layer;
- struct layer *state_z_layer;
- struct layer *input_r_layer;
- struct layer *state_r_layer;
- struct layer *input_h_layer;
- struct layer *state_h_layer;
-
- struct layer *wz;
- struct layer *uz;
- struct layer *wr;
- struct layer *ur;
- struct layer *wh;
- struct layer *uh;
- struct layer *uo;
- struct layer *wo;
- struct layer *uf;
- struct layer *wf;
- struct layer *ui;
- struct layer *wi;
- struct layer *ug;
- struct layer *wg;
- tree *softmax_tree;
- size_t workspace_size;
- #ifdef GPU
- int *indexes_gpu;
- float *z_gpu;
- float *r_gpu;
- float *h_gpu;
- float *temp_gpu;
- float *temp2_gpu;
- float *temp3_gpu;
- float *dh_gpu;
- float *hh_gpu;
- float *prev_cell_gpu;
- float *cell_gpu;
- float *f_gpu;
- float *i_gpu;
- float *g_gpu;
- float *o_gpu;
- float *c_gpu;
- float *dc_gpu;
- float *m_gpu;
- float *v_gpu;
- float *bias_m_gpu;
- float *scale_m_gpu;
- float *bias_v_gpu;
- float *scale_v_gpu;
- float * combine_gpu;
- float * combine_delta_gpu;
- float * prev_state_gpu;
- float * forgot_state_gpu;
- float * forgot_delta_gpu;
- float * state_gpu;
- float * state_delta_gpu;
- float * gate_gpu;
- float * gate_delta_gpu;
- float * save_gpu;
- float * save_delta_gpu;
- float * concat_gpu;
- float * concat_delta_gpu;
- float * binary_input_gpu;
- float * binary_weights_gpu;
- float * mean_gpu;
- float * variance_gpu;
- float * rolling_mean_gpu;
- float * rolling_variance_gpu;
- float * variance_delta_gpu;
- float * mean_delta_gpu;
- float * x_gpu;
- float * x_norm_gpu;
- float * weights_gpu;
- float * weight_updates_gpu;
- float * weight_change_gpu;
- float * biases_gpu;
- float * bias_updates_gpu;
- float * bias_change_gpu;
- float * scales_gpu;
- float * scale_updates_gpu;
- float * scale_change_gpu;
- float * output_gpu;
- float * loss_gpu;
- float * delta_gpu;
- float * rand_gpu;
- float * squared_gpu;
- float * norms_gpu;
- #ifdef CUDNN
- cudnnTensorDescriptor_t srcTensorDesc, dstTensorDesc;
- cudnnTensorDescriptor_t dsrcTensorDesc, ddstTensorDesc;
- cudnnTensorDescriptor_t normTensorDesc;
- cudnnFilterDescriptor_t weightDesc;
- cudnnFilterDescriptor_t dweightDesc;
- cudnnConvolutionDescriptor_t convDesc;
- cudnnConvolutionFwdAlgo_t fw_algo;
- cudnnConvolutionBwdDataAlgo_t bd_algo;
- cudnnConvolutionBwdFilterAlgo_t bf_algo;
- #endif
- #endif
- };
- void free_layer(layer);
- typedef enum {
- CONSTANT, STEP, EXP, POLY, STEPS, SIG, RANDOM
- } learning_rate_policy;
- typedef struct network{
- int n;
- int batch;
- size_t *seen;
- int *t;
- float epoch;
- int subdivisions;
- layer *layers;
- float *output;
- learning_rate_policy policy;
- float learning_rate;
- float momentum;
- float decay;
- float gamma;
- float scale;
- float power;
- int time_steps;
- int step;
- int max_batches;
- float *scales;
- int *steps;
- int num_steps;
- int burn_in;
- int adam;
- float B1;
- float B2;
- float eps;
- int inputs;
- int outputs;
- int truths;
- int notruth;
- int h, w, c;
- int max_crop;
- int min_crop;
- float max_ratio;
- float min_ratio;
- int center;
- float angle;
- float aspect;
- float exposure;
- float saturation;
- float hue;
- int random;
- int gpu_index;
- tree *hierarchy;
- float *input;
- float *truth;
- float *delta;
- float *workspace;
- int train;
- int index;
- float *cost;
- float clip;
- #ifdef GPU
- float *input_gpu;
- float *truth_gpu;
- float *delta_gpu;
- float *output_gpu;
- #endif
- } network;
- typedef struct {
- int w;
- int h;
- float scale;
- float rad;
- float dx;
- float dy;
- float aspect;
- } augment_args;
- typedef struct {
- int w;
- int h;
- int c;
- float *data;
- } image;
- typedef struct{
- float x, y, w, h;
- } box;
- typedef struct detection{
- box bbox;
- int classes;
- float *prob;
- float *mask;
- float objectness;
- int sort_class;
- } detection;
- typedef struct matrix{
- int rows, cols;
- float **vals;
- } matrix;
- typedef struct{
- int w, h;
- matrix X;
- matrix y;
- int shallow;
- int *num_boxes;
- box **boxes;
- } data;
- typedef enum {
- CLASSIFICATION_DATA, DETECTION_DATA, CAPTCHA_DATA, REGION_DATA, IMAGE_DATA, COMPARE_DATA, WRITING_DATA, SWAG_DATA, TAG_DATA, OLD_CLASSIFICATION_DATA, STUDY_DATA, DET_DATA, SUPER_DATA, LETTERBOX_DATA, REGRESSION_DATA, SEGMENTATION_DATA, INSTANCE_DATA, ISEG_DATA
- } data_type;
- typedef struct load_args{
- int threads;
- char **paths;
- char *path;
- int n;
- int m;
- char **labels;
- int h;
- int w;
- int out_w;
- int out_h;
- int nh;
- int nw;
- int num_boxes;
- int min, max, size;
- int classes;
- int background;
- int scale;
- int center;
- int coords;
- float jitter;
- float angle;
- float aspect;
- float saturation;
- float exposure;
- float hue;
- data *d;
- image *im;
- image *resized;
- data_type type;
- tree *hierarchy;
- } load_args;
- typedef struct{
- int id;
- float x,y,w,h;
- float left, right, top, bottom;
- } box_label;
- network *load_network(char *cfg, char *weights, int clear);
- load_args get_base_args(network *net);
- void free_data(data d);
- typedef struct node{
- void *val;
- struct node *next;
- struct node *prev;
- } node;
- typedef struct list{
- int size;
- node *front;
- node *back;
- } list;
- pthread_t load_data(load_args args);
- list *read_data_cfg(char *filename);
- list *read_cfg(char *filename);
- unsigned char *read_file(char *filename);
- data resize_data(data orig, int w, int h);
- data *tile_data(data orig, int divs, int size);
- data select_data(data *orig, int *inds);
- void forward_network(network *net);
- void backward_network(network *net);
- void update_network(network *net);
- float dot_cpu(int N, float *X, int INCX, float *Y, int INCY);
- void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY);
- void copy_cpu(int N, float *X, int INCX, float *Y, int INCY);
- void scal_cpu(int N, float ALPHA, float *X, int INCX);
- void fill_cpu(int N, float ALPHA, float * X, int INCX);
- void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial);
- void softmax(float *input, int n, float temp, int stride, float *output);
- int best_3d_shift_r(image a, image b, int min, int max);
- #ifdef GPU
- void axpy_gpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY);
- void fill_gpu(int N, float ALPHA, float * X, int INCX);
- void scal_gpu(int N, float ALPHA, float * X, int INCX);
- void copy_gpu(int N, float * X, int INCX, float * Y, int INCY);
- void cuda_set_device(int n);
- void cuda_free(float *x_gpu);
- float *cuda_make_array(float *x, size_t n);
- void cuda_pull_array(float *x_gpu, float *x, size_t n);
- float cuda_mag_array(float *x_gpu, size_t n);
- void cuda_push_array(float *x_gpu, float *x, size_t n);
- void forward_network_gpu(network *net);
- void backward_network_gpu(network *net);
- void update_network_gpu(network *net);
- float train_networks(network **nets, int n, data d, int interval);
- void sync_nets(network **nets, int n, int interval);
- void harmless_update_network_gpu(network *net);
- #endif
- image get_label(image **characters, char *string, int size);
- void draw_label(image a, int r, int c, image label, const float *rgb);
- void save_image(image im, const char *name);
- void save_image_options(image im, const char *name, IMTYPE f, int quality);
- void get_next_batch(data d, int n, int offset, float *X, float *y);
- void grayscale_image_3c(image im);
- void normalize_image(image p);
- void matrix_to_csv(matrix m);
- float train_network_sgd(network *net, data d, int n);
- void rgbgr_image(image im);
- data copy_data(data d);
- data concat_data(data d1, data d2);
- data load_cifar10_data(char *filename);
- float matrix_topk_accuracy(matrix truth, matrix guess, int k);
- void matrix_add_matrix(matrix from, matrix to);
- void scale_matrix(matrix m, float scale);
- matrix csv_to_matrix(char *filename);
- float *network_accuracies(network *net, data d, int n);
- float train_network_datum(network *net);
- image make_random_image(int w, int h, int c);
- void denormalize_connected_layer(layer l);
- void denormalize_convolutional_layer(layer l);
- void statistics_connected_layer(layer l);
- void rescale_weights(layer l, float scale, float trans);
- void rgbgr_weights(layer l);
- image *get_weights(layer l);
- void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, const char *filename, char **names, int classes, int frame_skip, char *prefix, int avg, float hier_thresh, int w, int h, int fps, int fullscreen);
- void get_detection_detections(layer l, int w, int h, float thresh, detection *dets);
- char *option_find_str(list *l, char *key, char *def);
- int option_find_int(list *l, char *key, int def);
- int option_find_int_quiet(list *l, char *key, int def);
- network *parse_network_cfg(char *filename);
- void save_weights(network *net, char *filename);
- void load_weights(network *net, char *filename);
- void save_weights_upto(network *net, char *filename, int cutoff);
- void load_weights_upto(network *net, char *filename, int start, int cutoff);
- void zero_objectness(layer l);
- void get_region_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, float tree_thresh, int relative, detection *dets);
- int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets);
- void free_network(network *net);
- void set_batch_network(network *net, int b);
- void set_temp_network(network *net, float t);
- image load_image(char *filename, int w, int h, int c);
- image load_image_color(char *filename, int w, int h);
- image make_image(int w, int h, int c);
- image resize_image(image im, int w, int h);
- void censor_image(image im, int dx, int dy, int w, int h);
- image letterbox_image(image im, int w, int h);
- image crop_image(image im, int dx, int dy, int w, int h);
- image center_crop_image(image im, int w, int h);
- image resize_min(image im, int min);
- image resize_max(image im, int max);
- image threshold_image(image im, float thresh);
- image mask_to_rgb(image mask);
- int resize_network(network *net, int w, int h);
- void free_matrix(matrix m);
- void test_resize(char *filename);
- int show_image(image p, const char *name, int ms);
- image copy_image(image p);
- void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b);
- float get_current_rate(network *net);
- void composite_3d(char *f1, char *f2, char *out, int delta);
- data load_data_old(char **paths, int n, int m, char **labels, int k, int w, int h);
- size_t get_current_batch(network *net);
- void constrain_image(image im);
- image get_network_image_layer(network *net, int i);
- layer get_network_output_layer(network *net);
- void top_predictions(network *net, int n, int *index);
- void flip_image(image a);
- image float_to_image(int w, int h, int c, float *data);
- void ghost_image(image source, image dest, int dx, int dy);
- float network_accuracy(network *net, data d);
- void random_distort_image(image im, float hue, float saturation, float exposure);
- void fill_image(image m, float s);
- image grayscale_image(image im);
- void rotate_image_cw(image im, int times);
- double what_time_is_it_now();
- image rotate_image(image m, float rad);
- void visualize_network(network *net);
- float box_iou(box a, box b);
- data load_all_cifar10();
- box_label *read_boxes(char *filename, int *n);
- box float_to_box(float *f, int stride);
- void draw_detections(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes);
- matrix network_predict_data(network *net, data test);
- image **load_alphabet();
- image get_network_image(network *net);
- float *network_predict(network *net, float *input);
- int network_width(network *net);
- int network_height(network *net);
- float *network_predict_image(network *net, image im);
- void network_detect(network *net, image im, float thresh, float hier_thresh, float nms, detection *dets);
- detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num);
- void free_detections(detection *dets, int n);
- void reset_network_state(network *net, int b);
- char **get_labels(char *filename);
- void do_nms_obj(detection *dets, int total, int classes, float thresh);
- void do_nms_sort(detection *dets, int total, int classes, float thresh);
- matrix make_matrix(int rows, int cols);
- #ifdef OPENCV
- void *open_video_stream(const char *f, int c, int w, int h, int fps);
- image get_image_from_stream(void *p);
- void make_window(char *name, int w, int h, int fullscreen);
- #endif
- void free_image(image m);
- float train_network(network *net, data d);
- pthread_t load_data_in_thread(load_args args);
- void load_data_blocking(load_args args);
- list *get_paths(char *filename);
- void hierarchy_predictions(float *predictions, int n, tree *hier, int only_leaves, int stride);
- void change_leaves(tree *t, char *leaf_list);
- int find_int_arg(int argc, char **argv, char *arg, int def);
- float find_float_arg(int argc, char **argv, char *arg, float def);
- int find_arg(int argc, char* argv[], char *arg);
- char *find_char_arg(int argc, char **argv, char *arg, char *def);
- char *basecfg(char *cfgfile);
- void find_replace(char *str, char *orig, char *rep, char *output);
- void free_ptrs(void **ptrs, int n);
- char *fgetl(FILE *fp);
- void strip(char *s);
- float sec(clock_t clocks);
- void **list_to_array(list *l);
- void top_k(float *a, int n, int k, int *index);
- int *read_map(char *filename);
- void error(const char *s);
- int max_index(float *a, int n);
- int max_int_index(int *a, int n);
- int sample_array(float *a, int n);
- int *random_index_order(int min, int max);
- void free_list(list *l);
- float mse_array(float *a, int n);
- float variance_array(float *a, int n);
- float mag_array(float *a, int n);
- void scale_array(float *a, int n, float s);
- float mean_array(float *a, int n);
- float sum_array(float *a, int n);
- void normalize_array(float *a, int n);
- int *read_intlist(char *s, int *n, int d);
- size_t rand_size_t();
- float rand_normal();
- float rand_uniform(float min, float max);
- #ifdef __cplusplus
- }
- #endif
- #endif
|