CA Lecture 5c: Digital Logic

Properties of Boolean Algebra Read Appendix A of textbook: p450 – p456 (Not examined, except DeMorgan theorem)

Properties of Boolean Algebra

	Relationship	Dual	Property
Postulates	AB = BA	A + B = B + A	Commutative
	A(B+C) = AB+AC	A + B C = (A + B) (A + C)	Distributive
	1 A = A	0 + A = A	Identity
	$A\overline{A} = 0$	$A + \overline{A} = 1$	Complement
	0 A = 0	1 + A = 1	Zero and one theorems
Fheorems	A A = A	A + A = A	Idempotence
	$\underline{A}(B C) = (A B) C$	A + (B + C) = (A + B) + C	Associative
	$\overline{\overline{A}} = A$		Involution
	$\overline{A} B = \overline{A} + \overline{B}$	$\overline{A+B} = \overline{A} \overline{B}$	DeMorgan's Theorem
	$AB + \overline{AC} + BC$	$(A+B)(\overline{A}+C)(B+C)$	Consensus Theorem
	$= AB + \overline{AC}$	$= (A+B)(\overline{A}+C)$	
	A (A + B) = A	A + AB = A	Absorption Theorem

Properties of Boolean Algebra Cont.

- The postulates are basic axioms of Boolean algebra and therefore need no proofs.
- The theorems can be proven from the postulates.
- Each relationship has both an AND form and an OR form as a result of the principle of duality.
- The dual form is obtained by replacing AND with OR and OR with AND, 1's with 0's, and 0's with 1's.

Properties of Boolean Algebra Cont.

- The commutative property states that the order that two variables appear in an AND or OR function is not significant.
- The distributive property shows how a variable is distributed over an expression.
- The identity property states that a variable that is ANDed with 1 or is ORed with 0 produces the original variable.
- The complement property states that a variable that is ANDed with its complement is logically false, and a variable that is ORed with its complement is logical true.

Properties of Boolean Algebra Cont.

- The zero and one theorems state that a variable that is ANDed with 0 produces a 0, and a variable that is ORed with 1 produces a 1.
- The idempotence theorem states that a variable that is ANDed or ORed with itself produces the original variable.
- The associative theorem states that the order of ANDing or ORing is logically of no consequence.
- The involution theorem states that the complement of a complement leaves the original variable (or expression) unchanged.