# -*- coding:utf-8 -*- import os import json import tensorflow as tf import src.facenet import src.align.detect_face import numpy as np from scipy import misc import face_mysql class face_reconition: def __init__(self): pass def prewhiten(self, x): mean = np.mean(x) std = np.std(x) std_adj = np.maximum(std, 1.0 / np.sqrt(x.size)) y = np.multiply(np.subtract(x, mean), 1 / std_adj) return y # 根据路径获取该文件夹中所有的图片 def get_image_paths(self, inpath): paths = [] for file in os.listdir(inpath): if os.path.isfile(os.path.join(inpath, file)): if file.lower().endswith(('.png', '.jpg', '.jpeg')) is False: continue paths.append(os.path.join(inpath, file)) return (paths) # 将一个文件夹下的所有图片转化为json 方法二 只能是传入文件夹 并存入数据库 def images_to_vectors(self, inpath, outjson_path, modelpath): results = dict() with tf.Graph().as_default(): with tf.Session() as sess: src.facenet.load_model(modelpath) # Get input and output tensors images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0") embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0") phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0") image_paths = self.get_image_paths(inpath) for image_path in image_paths: # 获取图片中的人脸数 img = misc.imread(os.path.expanduser(image_path), mode='RGB') images = self.image_array_align_data(img,image_path) #判断是否检测出人脸 检测不出 就跳出此循环 if images.shape[0] == 1 : continue feed_dict = {images_placeholder: images, phase_train_placeholder: False} emb_array = sess.run(embeddings, feed_dict=feed_dict) filename_base, file_extension = os.path.splitext(image_path) for j in range(0, len(emb_array)): results[filename_base + "_" + str(j)] = emb_array[j].tolist() face_mysql_instant = face_mysql.face_mysql() face_mysql_instant.insert_facejson(filename_base + "_" + str(j), ",".join(str(li) for li in emb_array[j].tolist())) # All done, save for later! json.dump(results, open(outjson_path, "w")) # 返回图像中所有人脸的向量 def image_array_align_data(self, image_arr,image_path, image_size=160, margin=32, gpu_memory_fraction=1.0, detect_multiple_faces=True): minsize = 20 # minimum size of face threshold = [0.6, 0.7, 0.7] # three steps's threshold factor = 0.709 # scale factor print('Creating networks and loading parameters') with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = src.align.detect_face.create_mtcnn(sess, None) img = image_arr bounding_boxes, _ = src.align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor) nrof_faces = bounding_boxes.shape[0] nrof_successfully_aligned = 0 if nrof_faces > 0: det = bounding_boxes[:, 0:4] det_arr = [] img_size = np.asarray(img.shape)[0:2] if nrof_faces > 1: if detect_multiple_faces: for i in range(nrof_faces): det_arr.append(np.squeeze(det[i])) else: bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) img_center = img_size / 2 offsets = np.vstack( [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) index = np.argmax( bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering det_arr.append(det[index, :]) else: det_arr.append(np.squeeze(det)) images = np.zeros((nrof_faces, image_size, image_size, 3)) for i, det in enumerate(det_arr): det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0] - margin / 2, 0) bb[1] = np.maximum(det[1] - margin / 2, 0) bb[2] = np.minimum(det[2] + margin / 2, img_size[1]) bb[3] = np.minimum(det[3] + margin / 2, img_size[0]) cropped = img[bb[1]:bb[3], bb[0]:bb[2], :] # 进行图片缩放 cv2.resize(img,(w,h)) scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear') nrof_successfully_aligned += 1 # print(scaled) # scaled=self.prewhiten(scaled) # 保存检测的头像 filename_base = './img/' filename = os.path.basename(image_path) filename_name, file_extension = os.path.splitext(filename) output_filename_n = "{}/{}_{}{}".format(filename_base, filename_name, i, file_extension) misc.imsave(output_filename_n, scaled) scaled = src.facenet.prewhiten(scaled) scaled = src.facenet.crop(scaled, False, 160) scaled = src.facenet.flip(scaled, False) images[i] = scaled if nrof_faces > 0: return images else: #如果没有检测到人脸 直接返回一个1*3的0矩阵 多少维度都行 只要能和是不是一个图片辨别出来就行 return np.zeros((1,3)) if __name__ == "__main__": face_reconition = face_reconition() images_path = './img/img' #模型地址 modelpath = '/export/zang/facenet/models/facenet/20170512-110547' out_path = './img/pic.json' face_reconition.images_to_vectors(images_path, out_path, modelpath)