123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261 |
- # -*- coding:utf-8 -*-
- from flask import Flask, jsonify, abort, make_response, request, url_for
- from flask_httpauth import HTTPBasicAuth
- import json
- import os
- import ntpath
- import argparse
- import face_mysql
- import tensorflow as tf
- import src.facenet
- import src.align.detect_face
- import numpy as np
- from scipy import misc
- import matrix_fun
- import urllib
- app = Flask(__name__)
- # 图片最大为16M
- app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
- auth = HTTPBasicAuth()
- #设置最大的相似距离,1.22是facenet基于lfw计算得到的
- MAX_DISTINCT=1.22
- # 设置上传的图片路径和格式
- from werkzeug import secure_filename
- #设置post请求中获取的图片保存的路径
- UPLOAD_FOLDER = './pic_tmp/'
- if not os.path.exists(UPLOAD_FOLDER):
- os.makedirs(UPLOAD_FOLDER)
- else:
- pass
- ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg'])
- app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
- def allowed_file(filename):
- return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
- with tf.Graph().as_default():
- gpu_memory_fraction = 1.0
- gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
- sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
- with sess.as_default():
- pnet, rnet, onet = src.align.detect_face.create_mtcnn(sess, None)
- #训练模型的路径
- modelpath = "./models/facenet/20170512-110547"
- with tf.Graph().as_default():
- sess = tf.Session()
- # src.facenet.load_model(modelpath)
- # 加载模型
- meta_file, ckpt_file = src.facenet.get_model_filenames(modelpath)
- saver = tf.train.import_meta_graph(os.path.join(modelpath, meta_file))
- saver.restore(sess, os.path.join(modelpath, ckpt_file))
- # Get input and output tensors
- images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
- embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
- phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
- # 进行人脸识别,加载
- print('Creating networks and loading parameters')
- #获取post中的图片并执行插入到库 返回数据库中保存的id
- @app.route('/face/insert', methods=['POST'])
- def face_insert():
- #分别获取post请求中的uid 和ugroup作为图片信息
- uid = request.form['uid']
- ugroup = request.form['ugroup']
- upload_files = request.files['imagefile']
- #从post请求图片保存到本地路径中
- file = upload_files
- if file and allowed_file(file.filename):
- filename = secure_filename(file.filename)
- file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
- image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
- print(image_path)
- #opencv读取图片,开始进行人脸识别
- img = misc.imread(os.path.expanduser(image_path), mode='RGB')
- # 设置默认插入时 detect_multiple_faces =Flase只检测图中的一张人脸,True则检测人脸中的多张
- #一般入库时只检测一张人脸,查询时检测多张人脸
- images = image_array_align_data(img, image_path, pnet, rnet, onet, detect_multiple_faces=False)
- feed_dict = {images_placeholder: images, phase_train_placeholder: False}
- #emb_array保存的是经过facenet转换的128维的向量
- emb_array = sess.run(embeddings, feed_dict=feed_dict)
- filename_base, file_extension = os.path.splitext(image_path)
- id_list = []
- #存入数据库
- for j in range(0, len(emb_array)):
- face_mysql_instant = face_mysql.face_mysql()
- last_id = face_mysql_instant.insert_facejson(filename_base + "_" + str(j),
- ",".join(str(li) for li in emb_array[j].tolist()), uid, ugroup)
- id_list.append(str(last_id))
- #设置返回类型
- request_result = {}
- request_result['id'] = ",".join(id_list)
- if len(id_list) > 0:
- request_result['state'] = 'sucess'
- else:
- request_result['state'] = 'error'
- print(request_result)
- return json.dumps(request_result)
- @app.route('/face/query', methods=['POST'])
- def face_query():
- #获取查询条件 在ugroup中查找相似的人脸
- ugroup = request.form['ugroup']
- upload_files = request.files['imagefile']
- #获取post请求的图片到本地
- file = upload_files
- if file and allowed_file(file.filename):
- filename = secure_filename(file.filename)
- file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
- image_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
- print(image_path)
- #读取本地的图片
- img = misc.imread(os.path.expanduser(image_path), mode='RGB')
- images = image_array_align_data(img, image_path, pnet, rnet, onet)
- #判断如果如图没有检测到人脸则直接返回
- if len(images.shape) < 4: return json.dumps({'error': "not found face"})
- feed_dict = {images_placeholder: images, phase_train_placeholder: False}
- emb_array = sess.run(embeddings, feed_dict=feed_dict)
- face_query = matrix_fun.matrix()
- #分别获取距离该图片中人脸最相近的人脸信息
- # pic_min_scores 是数据库中人脸距离(facenet计算人脸相似度根据人脸距离进行的)
- # pic_min_names 是当时入库时保存的文件名
- # pic_min_uid 是对应的用户id
- pic_min_scores, pic_min_names, pic_min_uid = face_query.get_socres(emb_array, ugroup)
- #如果提交的query没有group 则返回
- if len(pic_min_scores) == 0: return json.dumps({'error': "not found user group"})
- #设置返回结果
- result = []
- for i in range(0, len(pic_min_scores)):
- if pic_min_scores[i]<MAX_DISTINCT:
- rdict = {'uid': pic_min_uid[i],
- 'distance': pic_min_scores[i],
- 'pic_name': pic_min_names[i] }
- result.append(rdict)
- print(result)
- if len(result)==0 :
- return json.dumps({"state":"success, but not match face"})
- else:
- return json.dumps(result)
- #检测图片中的人脸 image_arr是opencv读取图片后的3维矩阵 返回图片中人脸的位置信息
- def image_array_align_data(image_arr, image_path, pnet, rnet, onet, image_size=160, margin=32, gpu_memory_fraction=1.0,
- detect_multiple_faces=True):
- minsize = 20 # minimum size of face
- threshold = [0.6, 0.7, 0.7] # three steps's threshold
- factor = 0.709 # scale factor
- img = image_arr
- bounding_boxes, _ = src.align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
- nrof_faces = bounding_boxes.shape[0]
- nrof_successfully_aligned = 0
- if nrof_faces > 0:
- det = bounding_boxes[:, 0:4]
- det_arr = []
- img_size = np.asarray(img.shape)[0:2]
- if nrof_faces > 1:
- if detect_multiple_faces:
- for i in range(nrof_faces):
- det_arr.append(np.squeeze(det[i]))
- else:
- bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
- img_center = img_size / 2
- offsets = np.vstack(
- [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
- offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
- index = np.argmax(
- bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
- det_arr.append(det[index, :])
- else:
- det_arr.append(np.squeeze(det))
- images = np.zeros((len(det_arr), image_size, image_size, 3))
- for i, det in enumerate(det_arr):
- det = np.squeeze(det)
- bb = np.zeros(4, dtype=np.int32)
- bb[0] = np.maximum(det[0] - margin / 2, 0)
- bb[1] = np.maximum(det[1] - margin / 2, 0)
- bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
- bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
- cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
- # 进行图片缩放 cv2.resize(img,(w,h))
- scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
- nrof_successfully_aligned += 1
- # 保存检测的头像
- filename_base = './pic_tmp'
- filename = os.path.basename(image_path)
- filename_name, file_extension = os.path.splitext(filename)
- #多个人脸时,在picname后加_0 _1 _2 依次累加。
- output_filename_n = "{}/{}_{}{}".format(filename_base, filename_name, i, file_extension)
- misc.imsave(output_filename_n, scaled)
- scaled = src.facenet.prewhiten(scaled)
- scaled = src.facenet.crop(scaled, False, 160)
- scaled = src.facenet.flip(scaled, False)
- images[i] = scaled
- if nrof_faces > 0:
- return images
- else:
- # 如果没有检测到人脸 直接返回一个1*3的0矩阵 多少维度都行 只要能和是不是一个图片辨别出来就行
- return np.zeros((1, 3))
- # 备用 通过urllib的方式从远程地址获取一个图片到本地
- # 利用该方法可以提交一个图片的url地址,则也是先保存到本地再进行后续处理
- def get_url_imgae(picurl):
- response = urllib.urlopen(picurl)
- pic = response.read()
- pic_name = "./pic_tmp/" + os.path.basename(picurl)
- with open(pic_name, 'wb') as f:
- f.write(pic)
- return pic_name
- @auth.get_password
- def get_password(username):
- if username == 'face':
- return 'face'
- return None
- @auth.error_handler
- def unauthorized():
- return make_response(jsonify({'error': 'Unauthorized access'}), 401)
- @app.errorhandler(400)
- def not_found(error):
- return make_response(jsonify({'error': 'Invalid data!'}), 400)
- if __name__ == '__main__':
- app.run(host='0.0.0.0', port=8088)
|