123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- # -*- coding:utf-8 -*-
- import os
- import json
- import tensorflow as tf
- import src.facenet
- import src.align.detect_face
- import numpy as np
- from scipy import misc
- import face_mysql
- class face_reconition:
- def __init__(self):
- pass
- def prewhiten(self, x):
- mean = np.mean(x)
- std = np.std(x)
- std_adj = np.maximum(std, 1.0 / np.sqrt(x.size))
- y = np.multiply(np.subtract(x, mean), 1 / std_adj)
- return y
- # 根据路径获取该文件夹中所有的图片
- def get_image_paths(self, inpath):
- paths = []
- for file in os.listdir(inpath):
- if os.path.isfile(os.path.join(inpath, file)):
- if file.lower().endswith(('.png', '.jpg', '.jpeg')) is False:
- continue
- paths.append(os.path.join(inpath, file))
- return (paths)
- # 将一个文件夹下的所有图片转化为json 方法二 只能是传入文件夹 并存入数据库
- def images_to_vectors(self, inpath, outjson_path, modelpath):
- results = dict()
- with tf.Graph().as_default():
- with tf.Session() as sess:
- src.facenet.load_model(modelpath)
- # Get input and output tensors
- images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
- embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
- phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
- image_paths = self.get_image_paths(inpath)
- for image_path in image_paths:
- # 获取图片中的人脸数
- img = misc.imread(os.path.expanduser(image_path), mode='RGB')
- images = self.image_array_align_data(img,image_path)
- #判断是否检测出人脸 检测不出 就跳出此循环
- if images.shape[0] == 1 : continue
- feed_dict = {images_placeholder: images, phase_train_placeholder: False}
- emb_array = sess.run(embeddings, feed_dict=feed_dict)
- filename_base, file_extension = os.path.splitext(image_path)
- for j in range(0, len(emb_array)):
- results[filename_base + "_" + str(j)] = emb_array[j].tolist()
- face_mysql_instant = face_mysql.face_mysql()
- face_mysql_instant.insert_facejson(filename_base + "_" + str(j),
- ",".join(str(li) for li in emb_array[j].tolist()))
- # All done, save for later!
- json.dump(results, open(outjson_path, "w"))
- # 返回图像中所有人脸的向量
- def image_array_align_data(self, image_arr,image_path, image_size=160, margin=32, gpu_memory_fraction=1.0,
- detect_multiple_faces=True):
- minsize = 20 # minimum size of face
- threshold = [0.6, 0.7, 0.7] # three steps's threshold
- factor = 0.709 # scale factor
- print('Creating networks and loading parameters')
- with tf.Graph().as_default():
- gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
- sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
- with sess.as_default():
- pnet, rnet, onet = src.align.detect_face.create_mtcnn(sess, None)
- img = image_arr
- bounding_boxes, _ = src.align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
- nrof_faces = bounding_boxes.shape[0]
- nrof_successfully_aligned = 0
- if nrof_faces > 0:
- det = bounding_boxes[:, 0:4]
- det_arr = []
- img_size = np.asarray(img.shape)[0:2]
- if nrof_faces > 1:
- if detect_multiple_faces:
- for i in range(nrof_faces):
- det_arr.append(np.squeeze(det[i]))
- else:
- bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
- img_center = img_size / 2
- offsets = np.vstack(
- [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
- offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
- index = np.argmax(
- bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
- det_arr.append(det[index, :])
- else:
- det_arr.append(np.squeeze(det))
- images = np.zeros((nrof_faces, image_size, image_size, 3))
- for i, det in enumerate(det_arr):
- det = np.squeeze(det)
- bb = np.zeros(4, dtype=np.int32)
- bb[0] = np.maximum(det[0] - margin / 2, 0)
- bb[1] = np.maximum(det[1] - margin / 2, 0)
- bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
- bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
- cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
- # 进行图片缩放 cv2.resize(img,(w,h))
- scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
- nrof_successfully_aligned += 1
- # print(scaled)
- # scaled=self.prewhiten(scaled)
- # 保存检测的头像
- filename_base = './img/'
- filename = os.path.basename(image_path)
- filename_name, file_extension = os.path.splitext(filename)
- output_filename_n = "{}/{}_{}{}".format(filename_base, filename_name, i, file_extension)
- misc.imsave(output_filename_n, scaled)
- scaled = src.facenet.prewhiten(scaled)
- scaled = src.facenet.crop(scaled, False, 160)
- scaled = src.facenet.flip(scaled, False)
- images[i] = scaled
- if nrof_faces > 0:
- return images
- else:
- #如果没有检测到人脸 直接返回一个1*3的0矩阵 多少维度都行 只要能和是不是一个图片辨别出来就行
- return np.zeros((1,3))
- if __name__ == "__main__":
- face_reconition = face_reconition()
- images_path = './img/img'
- #模型地址
- modelpath = '/export/zang/facenet/models/facenet/20170512-110547'
- out_path = './img/pic.json'
- face_reconition.images_to_vectors(images_path, out_path, modelpath)
|