voxel.c 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. #include "darknet.h"
  2. void extract_voxel(char *lfile, char *rfile, char *prefix)
  3. {
  4. #ifdef OPENCV
  5. int w = 1920;
  6. int h = 1080;
  7. int shift = 0;
  8. int count = 0;
  9. CvCapture *lcap = cvCaptureFromFile(lfile);
  10. CvCapture *rcap = cvCaptureFromFile(rfile);
  11. while(1){
  12. image l = get_image_from_stream(lcap);
  13. image r = get_image_from_stream(rcap);
  14. if(!l.w || !r.w) break;
  15. if(count%100 == 0) {
  16. shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
  17. printf("%d\n", shift);
  18. }
  19. image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
  20. image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
  21. char buff[256];
  22. sprintf(buff, "%s_%05d_l", prefix, count);
  23. save_image(ls, buff);
  24. sprintf(buff, "%s_%05d_r", prefix, count);
  25. save_image(rs, buff);
  26. free_image(l);
  27. free_image(r);
  28. free_image(ls);
  29. free_image(rs);
  30. ++count;
  31. }
  32. #else
  33. printf("need OpenCV for extraction\n");
  34. #endif
  35. }
  36. void train_voxel(char *cfgfile, char *weightfile)
  37. {
  38. char *train_images = "/data/imagenet/imagenet1k.train.list";
  39. char *backup_directory = "/home/pjreddie/backup/";
  40. srand(time(0));
  41. char *base = basecfg(cfgfile);
  42. printf("%s\n", base);
  43. float avg_loss = -1;
  44. network net = parse_network_cfg(cfgfile);
  45. if(weightfile){
  46. load_weights(&net, weightfile);
  47. }
  48. printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
  49. int imgs = net.batch*net.subdivisions;
  50. int i = *net.seen/imgs;
  51. data train, buffer;
  52. list *plist = get_paths(train_images);
  53. //int N = plist->size;
  54. char **paths = (char **)list_to_array(plist);
  55. load_args args = {0};
  56. args.w = net.w;
  57. args.h = net.h;
  58. args.scale = 4;
  59. args.paths = paths;
  60. args.n = imgs;
  61. args.m = plist->size;
  62. args.d = &buffer;
  63. args.type = SUPER_DATA;
  64. pthread_t load_thread = load_data_in_thread(args);
  65. clock_t time;
  66. //while(i*imgs < N*120){
  67. while(get_current_batch(net) < net.max_batches){
  68. i += 1;
  69. time=clock();
  70. pthread_join(load_thread, 0);
  71. train = buffer;
  72. load_thread = load_data_in_thread(args);
  73. printf("Loaded: %lf seconds\n", sec(clock()-time));
  74. time=clock();
  75. float loss = train_network(net, train);
  76. if (avg_loss < 0) avg_loss = loss;
  77. avg_loss = avg_loss*.9 + loss*.1;
  78. printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
  79. if(i%1000==0){
  80. char buff[256];
  81. sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
  82. save_weights(net, buff);
  83. }
  84. if(i%100==0){
  85. char buff[256];
  86. sprintf(buff, "%s/%s.backup", backup_directory, base);
  87. save_weights(net, buff);
  88. }
  89. free_data(train);
  90. }
  91. char buff[256];
  92. sprintf(buff, "%s/%s_final.weights", backup_directory, base);
  93. save_weights(net, buff);
  94. }
  95. void test_voxel(char *cfgfile, char *weightfile, char *filename)
  96. {
  97. network net = parse_network_cfg(cfgfile);
  98. if(weightfile){
  99. load_weights(&net, weightfile);
  100. }
  101. set_batch_network(&net, 1);
  102. srand(2222222);
  103. clock_t time;
  104. char buff[256];
  105. char *input = buff;
  106. while(1){
  107. if(filename){
  108. strncpy(input, filename, 256);
  109. }else{
  110. printf("Enter Image Path: ");
  111. fflush(stdout);
  112. input = fgets(input, 256, stdin);
  113. if(!input) return;
  114. strtok(input, "\n");
  115. }
  116. image im = load_image_color(input, 0, 0);
  117. resize_network(&net, im.w, im.h);
  118. printf("%d %d\n", im.w, im.h);
  119. float *X = im.data;
  120. time=clock();
  121. network_predict(net, X);
  122. image out = get_network_image(net);
  123. printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
  124. save_image(out, "out");
  125. free_image(im);
  126. if (filename) break;
  127. }
  128. }
  129. void run_voxel(int argc, char **argv)
  130. {
  131. if(argc < 4){
  132. fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
  133. return;
  134. }
  135. char *cfg = argv[3];
  136. char *weights = (argc > 4) ? argv[4] : 0;
  137. char *filename = (argc > 5) ? argv[5] : 0;
  138. if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
  139. else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
  140. else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
  141. /*
  142. else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
  143. */
  144. }