123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- #include "darknet.h"
- void extract_voxel(char *lfile, char *rfile, char *prefix)
- {
- #ifdef OPENCV
- int w = 1920;
- int h = 1080;
- int shift = 0;
- int count = 0;
- CvCapture *lcap = cvCaptureFromFile(lfile);
- CvCapture *rcap = cvCaptureFromFile(rfile);
- while(1){
- image l = get_image_from_stream(lcap);
- image r = get_image_from_stream(rcap);
- if(!l.w || !r.w) break;
- if(count%100 == 0) {
- shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
- printf("%d\n", shift);
- }
- image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
- image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
- char buff[256];
- sprintf(buff, "%s_%05d_l", prefix, count);
- save_image(ls, buff);
- sprintf(buff, "%s_%05d_r", prefix, count);
- save_image(rs, buff);
- free_image(l);
- free_image(r);
- free_image(ls);
- free_image(rs);
- ++count;
- }
- #else
- printf("need OpenCV for extraction\n");
- #endif
- }
- void train_voxel(char *cfgfile, char *weightfile)
- {
- char *train_images = "/data/imagenet/imagenet1k.train.list";
- char *backup_directory = "/home/pjreddie/backup/";
- srand(time(0));
- char *base = basecfg(cfgfile);
- printf("%s\n", base);
- float avg_loss = -1;
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
- int imgs = net.batch*net.subdivisions;
- int i = *net.seen/imgs;
- data train, buffer;
- list *plist = get_paths(train_images);
- //int N = plist->size;
- char **paths = (char **)list_to_array(plist);
- load_args args = {0};
- args.w = net.w;
- args.h = net.h;
- args.scale = 4;
- args.paths = paths;
- args.n = imgs;
- args.m = plist->size;
- args.d = &buffer;
- args.type = SUPER_DATA;
- pthread_t load_thread = load_data_in_thread(args);
- clock_t time;
- //while(i*imgs < N*120){
- while(get_current_batch(net) < net.max_batches){
- i += 1;
- time=clock();
- pthread_join(load_thread, 0);
- train = buffer;
- load_thread = load_data_in_thread(args);
- printf("Loaded: %lf seconds\n", sec(clock()-time));
- time=clock();
- float loss = train_network(net, train);
- if (avg_loss < 0) avg_loss = loss;
- avg_loss = avg_loss*.9 + loss*.1;
- printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
- if(i%1000==0){
- char buff[256];
- sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
- save_weights(net, buff);
- }
- if(i%100==0){
- char buff[256];
- sprintf(buff, "%s/%s.backup", backup_directory, base);
- save_weights(net, buff);
- }
- free_data(train);
- }
- char buff[256];
- sprintf(buff, "%s/%s_final.weights", backup_directory, base);
- save_weights(net, buff);
- }
- void test_voxel(char *cfgfile, char *weightfile, char *filename)
- {
- network net = parse_network_cfg(cfgfile);
- if(weightfile){
- load_weights(&net, weightfile);
- }
- set_batch_network(&net, 1);
- srand(2222222);
- clock_t time;
- char buff[256];
- char *input = buff;
- while(1){
- if(filename){
- strncpy(input, filename, 256);
- }else{
- printf("Enter Image Path: ");
- fflush(stdout);
- input = fgets(input, 256, stdin);
- if(!input) return;
- strtok(input, "\n");
- }
- image im = load_image_color(input, 0, 0);
- resize_network(&net, im.w, im.h);
- printf("%d %d\n", im.w, im.h);
- float *X = im.data;
- time=clock();
- network_predict(net, X);
- image out = get_network_image(net);
- printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
- save_image(out, "out");
- free_image(im);
- if (filename) break;
- }
- }
- void run_voxel(int argc, char **argv)
- {
- if(argc < 4){
- fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
- return;
- }
- char *cfg = argv[3];
- char *weights = (argc > 4) ? argv[4] : 0;
- char *filename = (argc > 5) ? argv[5] : 0;
- if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
- else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
- else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
- /*
- else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
- */
- }
|