|
@@ -0,0 +1,153 @@
|
|
|
+# -*- coding:utf-8 -*-
|
|
|
+import os
|
|
|
+
|
|
|
+
|
|
|
+import json
|
|
|
+import tensorflow as tf
|
|
|
+import src.facenet
|
|
|
+import src.align.detect_face
|
|
|
+import numpy as np
|
|
|
+from scipy import misc
|
|
|
+import face_mysql
|
|
|
+
|
|
|
+
|
|
|
+class face_reconition:
|
|
|
+ def __init__(self):
|
|
|
+ pass
|
|
|
+
|
|
|
+ def prewhiten(self, x):
|
|
|
+ mean = np.mean(x)
|
|
|
+ std = np.std(x)
|
|
|
+ std_adj = np.maximum(std, 1.0 / np.sqrt(x.size))
|
|
|
+ y = np.multiply(np.subtract(x, mean), 1 / std_adj)
|
|
|
+ return y
|
|
|
+
|
|
|
+ # 根据路径获取该文件夹中所有的图片
|
|
|
+ def get_image_paths(self, inpath):
|
|
|
+ paths = []
|
|
|
+ for file in os.listdir(inpath):
|
|
|
+ if os.path.isfile(os.path.join(inpath, file)):
|
|
|
+ if file.lower().endswith(('.png', '.jpg', '.jpeg')) is False:
|
|
|
+ continue
|
|
|
+
|
|
|
+ paths.append(os.path.join(inpath, file))
|
|
|
+
|
|
|
+ return (paths)
|
|
|
+
|
|
|
+
|
|
|
+ # 将一个文件夹下的所有图片转化为json 方法二 只能是传入文件夹 并存入数据库
|
|
|
+ def images_to_vectors(self, inpath, outjson_path, modelpath):
|
|
|
+ results = dict()
|
|
|
+
|
|
|
+ with tf.Graph().as_default():
|
|
|
+ with tf.Session() as sess:
|
|
|
+ src.facenet.load_model(modelpath)
|
|
|
+ # Get input and output tensors
|
|
|
+ images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
|
|
|
+ embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
|
|
|
+ phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
|
|
|
+
|
|
|
+ image_paths = self.get_image_paths(inpath)
|
|
|
+ for image_path in image_paths:
|
|
|
+ # 获取图片中的人脸数
|
|
|
+ img = misc.imread(os.path.expanduser(image_path), mode='RGB')
|
|
|
+ images = self.image_array_align_data(img,image_path)
|
|
|
+ #判断是否检测出人脸 检测不出 就跳出此循环
|
|
|
+ if images.shape[0] == 1 : continue
|
|
|
+ feed_dict = {images_placeholder: images, phase_train_placeholder: False}
|
|
|
+
|
|
|
+ emb_array = sess.run(embeddings, feed_dict=feed_dict)
|
|
|
+
|
|
|
+ filename_base, file_extension = os.path.splitext(image_path)
|
|
|
+ for j in range(0, len(emb_array)):
|
|
|
+ results[filename_base + "_" + str(j)] = emb_array[j].tolist()
|
|
|
+ face_mysql_instant = face_mysql.face_mysql()
|
|
|
+ face_mysql_instant.insert_facejson(filename_base + "_" + str(j),
|
|
|
+ ",".join(str(li) for li in emb_array[j].tolist()))
|
|
|
+
|
|
|
+ # All done, save for later!
|
|
|
+ json.dump(results, open(outjson_path, "w"))
|
|
|
+ # 返回图像中所有人脸的向量
|
|
|
+
|
|
|
+ def image_array_align_data(self, image_arr,image_path, image_size=160, margin=32, gpu_memory_fraction=1.0,
|
|
|
+ detect_multiple_faces=True):
|
|
|
+ minsize = 20 # minimum size of face
|
|
|
+ threshold = [0.6, 0.7, 0.7] # three steps's threshold
|
|
|
+ factor = 0.709 # scale factor
|
|
|
+
|
|
|
+ print('Creating networks and loading parameters')
|
|
|
+ with tf.Graph().as_default():
|
|
|
+ gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
|
|
|
+ sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
|
|
|
+ with sess.as_default():
|
|
|
+ pnet, rnet, onet = src.align.detect_face.create_mtcnn(sess, None)
|
|
|
+
|
|
|
+ img = image_arr
|
|
|
+ bounding_boxes, _ = src.align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
|
|
|
+ nrof_faces = bounding_boxes.shape[0]
|
|
|
+
|
|
|
+ nrof_successfully_aligned = 0
|
|
|
+ if nrof_faces > 0:
|
|
|
+ det = bounding_boxes[:, 0:4]
|
|
|
+ det_arr = []
|
|
|
+ img_size = np.asarray(img.shape)[0:2]
|
|
|
+ if nrof_faces > 1:
|
|
|
+ if detect_multiple_faces:
|
|
|
+ for i in range(nrof_faces):
|
|
|
+ det_arr.append(np.squeeze(det[i]))
|
|
|
+ else:
|
|
|
+ bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
|
|
|
+ img_center = img_size / 2
|
|
|
+ offsets = np.vstack(
|
|
|
+ [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
|
|
|
+ offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
|
|
|
+ index = np.argmax(
|
|
|
+ bounding_box_size - offset_dist_squared * 2.0) # some extra weight on the centering
|
|
|
+ det_arr.append(det[index, :])
|
|
|
+ else:
|
|
|
+ det_arr.append(np.squeeze(det))
|
|
|
+
|
|
|
+ images = np.zeros((nrof_faces, image_size, image_size, 3))
|
|
|
+ for i, det in enumerate(det_arr):
|
|
|
+ det = np.squeeze(det)
|
|
|
+ bb = np.zeros(4, dtype=np.int32)
|
|
|
+ bb[0] = np.maximum(det[0] - margin / 2, 0)
|
|
|
+ bb[1] = np.maximum(det[1] - margin / 2, 0)
|
|
|
+ bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
|
|
|
+ bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
|
|
|
+ cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
|
|
|
+ # 进行图片缩放 cv2.resize(img,(w,h))
|
|
|
+ scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
|
|
|
+ nrof_successfully_aligned += 1
|
|
|
+
|
|
|
+ # print(scaled)
|
|
|
+ # scaled=self.prewhiten(scaled)
|
|
|
+ # 保存检测的头像
|
|
|
+ filename_base = './img/'
|
|
|
+ filename = os.path.basename(image_path)
|
|
|
+ filename_name, file_extension = os.path.splitext(filename)
|
|
|
+ output_filename_n = "{}/{}_{}{}".format(filename_base, filename_name, i, file_extension)
|
|
|
+ misc.imsave(output_filename_n, scaled)
|
|
|
+
|
|
|
+
|
|
|
+ scaled = src.facenet.prewhiten(scaled)
|
|
|
+ scaled = src.facenet.crop(scaled, False, 160)
|
|
|
+ scaled = src.facenet.flip(scaled, False)
|
|
|
+
|
|
|
+ images[i] = scaled
|
|
|
+ if nrof_faces > 0:
|
|
|
+ return images
|
|
|
+ else:
|
|
|
+ #如果没有检测到人脸 直接返回一个1*3的0矩阵 多少维度都行 只要能和是不是一个图片辨别出来就行
|
|
|
+ return np.zeros((1,3))
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+if __name__ == "__main__":
|
|
|
+ face_reconition = face_reconition()
|
|
|
+
|
|
|
+ images_path = './img/img'
|
|
|
+ #模型地址
|
|
|
+ modelpath = '/export/zang/facenet/models/facenet/20170512-110547'
|
|
|
+ out_path = './img/pic.json'
|
|
|
+ face_reconition.images_to_vectors(images_path, out_path, modelpath)
|