Explorar el Código

增加识别文件夹下所有的图并把头像提前保存功能文件

zangruirui hace 7 años
padre
commit
cc09b49a09
Se han modificado 2 ficheros con 157 adiciones y 0 borrados
  1. 4 0
      README.md
  2. 153 0
      face_recognition_savepic.py

+ 4 - 0
README.md

@@ -29,3 +29,7 @@
 ![](https://github.com/zangruirui/facenet_regonistant/blob/master/img/query.png)
 ![](https://github.com/zangruirui/facenet_regonistant/blob/master/img/query1.png)
 
+
+### 只识别文件夹下所有图片中的人脸,并保存
+face_recognition_savepic.py文件可以将images_path路径中的所有图片进行识别,将图中的人脸转换为json格式的数据输出到out_path ,并把每一个人脸设置为160X160的尺寸保证到./img/中  
+(具体文件目录可以根据自己的路径进行修改)

+ 153 - 0
face_recognition_savepic.py

@@ -0,0 +1,153 @@
+# -*- coding:utf-8 -*-
+import os
+
+
+import json
+import tensorflow as tf
+import src.facenet
+import src.align.detect_face
+import numpy as np
+from scipy import misc
+import face_mysql
+
+
+class face_reconition:
+    def __init__(self):
+        pass
+
+    def prewhiten(self, x):
+        mean = np.mean(x)
+        std = np.std(x)
+        std_adj = np.maximum(std, 1.0 / np.sqrt(x.size))
+        y = np.multiply(np.subtract(x, mean), 1 / std_adj)
+        return y
+
+    # 根据路径获取该文件夹中所有的图片
+    def get_image_paths(self, inpath):
+        paths = []
+        for file in os.listdir(inpath):
+            if os.path.isfile(os.path.join(inpath, file)):
+                if file.lower().endswith(('.png', '.jpg', '.jpeg')) is False:
+                    continue
+
+                paths.append(os.path.join(inpath, file))
+
+        return (paths)
+
+
+    # 将一个文件夹下的所有图片转化为json  方法二  只能是传入文件夹  并存入数据库
+    def images_to_vectors(self, inpath, outjson_path, modelpath):
+        results = dict()
+
+        with tf.Graph().as_default():
+            with tf.Session() as sess:
+                src.facenet.load_model(modelpath)
+                # Get input and output tensors
+                images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
+                embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
+                phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
+
+                image_paths = self.get_image_paths(inpath)
+                for image_path in image_paths:
+                    # 获取图片中的人脸数
+                    img = misc.imread(os.path.expanduser(image_path), mode='RGB')
+                    images = self.image_array_align_data(img,image_path)
+                    #判断是否检测出人脸 检测不出 就跳出此循环
+                    if images.shape[0] == 1 : continue
+                    feed_dict = {images_placeholder: images, phase_train_placeholder: False}
+
+                    emb_array = sess.run(embeddings, feed_dict=feed_dict)
+
+                    filename_base, file_extension = os.path.splitext(image_path)
+                    for j in range(0, len(emb_array)):
+                        results[filename_base + "_" + str(j)] = emb_array[j].tolist()
+                        face_mysql_instant = face_mysql.face_mysql()
+                        face_mysql_instant.insert_facejson(filename_base + "_" + str(j),
+                                                           ",".join(str(li) for li in emb_array[j].tolist()))
+
+        # All done, save for later!
+        json.dump(results, open(outjson_path, "w"))
+        # 返回图像中所有人脸的向量
+
+    def image_array_align_data(self, image_arr,image_path, image_size=160, margin=32, gpu_memory_fraction=1.0,
+                               detect_multiple_faces=True):
+        minsize = 20  # minimum size of face
+        threshold = [0.6, 0.7, 0.7]  # three steps's threshold
+        factor = 0.709  # scale factor
+
+        print('Creating networks and loading parameters')
+        with tf.Graph().as_default():
+            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_memory_fraction)
+            sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
+            with sess.as_default():
+                pnet, rnet, onet = src.align.detect_face.create_mtcnn(sess, None)
+
+        img = image_arr
+        bounding_boxes, _ = src.align.detect_face.detect_face(img, minsize, pnet, rnet, onet, threshold, factor)
+        nrof_faces = bounding_boxes.shape[0]
+
+        nrof_successfully_aligned = 0
+        if nrof_faces > 0:
+            det = bounding_boxes[:, 0:4]
+            det_arr = []
+            img_size = np.asarray(img.shape)[0:2]
+            if nrof_faces > 1:
+                if detect_multiple_faces:
+                    for i in range(nrof_faces):
+                        det_arr.append(np.squeeze(det[i]))
+                else:
+                    bounding_box_size = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
+                    img_center = img_size / 2
+                    offsets = np.vstack(
+                        [(det[:, 0] + det[:, 2]) / 2 - img_center[1], (det[:, 1] + det[:, 3]) / 2 - img_center[0]])
+                    offset_dist_squared = np.sum(np.power(offsets, 2.0), 0)
+                    index = np.argmax(
+                        bounding_box_size - offset_dist_squared * 2.0)  # some extra weight on the centering
+                    det_arr.append(det[index, :])
+            else:
+                det_arr.append(np.squeeze(det))
+
+            images = np.zeros((nrof_faces, image_size, image_size, 3))
+            for i, det in enumerate(det_arr):
+                det = np.squeeze(det)
+                bb = np.zeros(4, dtype=np.int32)
+                bb[0] = np.maximum(det[0] - margin / 2, 0)
+                bb[1] = np.maximum(det[1] - margin / 2, 0)
+                bb[2] = np.minimum(det[2] + margin / 2, img_size[1])
+                bb[3] = np.minimum(det[3] + margin / 2, img_size[0])
+                cropped = img[bb[1]:bb[3], bb[0]:bb[2], :]
+                # 进行图片缩放 cv2.resize(img,(w,h))
+                scaled = misc.imresize(cropped, (image_size, image_size), interp='bilinear')
+                nrof_successfully_aligned += 1
+
+                # print(scaled)
+                # scaled=self.prewhiten(scaled)
+                # 保存检测的头像
+                filename_base = './img/'
+                filename = os.path.basename(image_path)
+                filename_name, file_extension = os.path.splitext(filename)
+                output_filename_n = "{}/{}_{}{}".format(filename_base, filename_name, i, file_extension)
+                misc.imsave(output_filename_n, scaled)
+
+
+                scaled = src.facenet.prewhiten(scaled)
+                scaled = src.facenet.crop(scaled, False, 160)
+                scaled = src.facenet.flip(scaled, False)
+
+                images[i] = scaled
+        if nrof_faces > 0:
+            return images
+        else:
+            #如果没有检测到人脸  直接返回一个1*3的0矩阵  多少维度都行  只要能和是不是一个图片辨别出来就行
+            return np.zeros((1,3))
+
+
+
+if __name__ == "__main__":
+    face_reconition = face_reconition()
+
+    images_path = './img/img'
+    #模型地址
+    modelpath = '/export/zang/facenet/models/facenet/20170512-110547'
+    out_path = './img/pic.json'
+    face_reconition.images_to_vectors(images_path, out_path, modelpath)